Investigational New Drugs

, Volume 30, Issue 4, pp 1396–1403 | Cite as

In vitro effects of perifosine, bortezomib and lenalidomide against hematopoietic progenitor cells from healthy donors

  • Martin Schmidt-Hieber
  • Robert Dabrowski
  • Babette Aicher
  • Philipp Lohneis
  • Antonia Busse
  • Carola Tietze-Buerger
  • Birgit Reufi
  • Eckhard Thiel
  • Igor Wolfgang Blau


The novel AKT inhibitor perifosine possesses myelopoiesis-stimulating effects in rodents. We studied the in vitro effects of the novel agents perifosine, bortezomib and lenalidomide in addition to adriamycin against normal human hematopoietic progenitor cells (HPC) using different clonogenic and non-clonogenic assays. All agents inhibited colony-forming unit (CFU) formation, perifosine inhibiting mainly CFU-granulocyte/macrophage formation and the other agents burst-forming unit-erythroid formation. Perifosine combined with lenalidomide or adriamycin tended to act antagonistically in suppressing CFU formation. Despite their inhibition of CFU formation, perifosine, bortezomib and lenalidomide induced only slight or moderate cytotoxicity in CD34+ selected HPC, as assessed using different assays such as flow cytometry-based detection of activated caspases and immunohistochemistry studies (e.g., Ki-67 staining). In contrast to its myelopoiesis-stimulating effects in rodents, perifosine - like bortezomib and lenalidomide - suppresses the clonogenic potential of HPC from healthy donors in vitro and thus probably plays no role in preventing neutropenia or in shorting its duration after intensive chemotherapy. However, all these novel agents typically induce only slight or moderate suppression of the clonogenic potential or loss of viability of normal HPC at clinically achievable plasma concentrations, assuming that hematoxicity is manageable and functional HPC can be collected after treatment with these compounds.


Bortezomib D 21266 (perifosine) Inhibitory concentration 50 Lenalidomide Myeloid progenitor cells 



The authors would like to thank the Dr. Werner Jackstädt Foundation for a grant supporting the work of M. Schmidt-Hieber. The authors also thank Dr. J. Weirowski for providing valuable editorial assistance.

Conflict of interest disclosure statement

B. Aicher is employed at Æterna Zentaris GmbH (Frankfurt/Main, Germany), and has stock/stock options at this company. The other authors have declared no conflicts of interest.

Supplementary material

10637_2011_9705_MOESM1_ESM.doc (683 kb)
Supplemental Figure 1 Depiction of exemplary Ki-67 and caspase-3 staining of CD34+ selected PB HPC after 24 h incubation with lenalidomide (1 µM). Percentages refer to positive cells. Tonsilar tissue with follicular hyperplasia was used as a positive control with a high Ki-67 proliferative index and numerous cleaved caspase-3+ apoptotic cells within the germinal centers. (DOC 683 kb)


  1. 1.
    Gills JJ, Dennis PA (2009) Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 11:102–110CrossRefPubMedGoogle Scholar
  2. 2.
    Unger C, Berdel W, Hanauske AR et al (2010) First-time-in-man and pharmacokinetic study of weekly oral perifosine in patients with solid tumours. Eur J Cancer 46:920–925CrossRefPubMedGoogle Scholar
  3. 3.
    Leighl NB, Dent S, Clemons M et al (2008) A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 108:87–92CrossRefPubMedGoogle Scholar
  4. 4.
    Richardson P, Wolf J, Jakubowiak A et al (2008) Phase I/II results of a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma who were previously relapsed from or refractory to bortezomib. Blood 112(Suppl 11):870Google Scholar
  5. 5.
    Pal SK, Reckamp K, Yu H et al (2010) Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs 19:1355–1366CrossRefPubMedGoogle Scholar
  6. 6.
    Van der Luit AH, Vink SR, Klarenbeek JB et al (2007) A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther 6:2337–2345CrossRefPubMedGoogle Scholar
  7. 7.
    Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719CrossRefPubMedGoogle Scholar
  8. 8.
    Hideshima T, Catley L, Raje N et al (2007) Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 138:783–791CrossRefPubMedGoogle Scholar
  9. 9.
    Fu L, Kim YA, Wang X et al (2009) Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 69:8967–8976CrossRefPubMedGoogle Scholar
  10. 10.
    Sun SY (2010) Enhancing perifosine’s anticancer efficacy by preventing autophagy. Autophagy 6:184–185CrossRefPubMedGoogle Scholar
  11. 11.
    Zerp SF, Vink SR, Ruiter GA et al (2008) Alkylphospholipids inhibit capillary-like endothelial tube formation in vitro: antiangiogenic properties of a new class of antitumor agents. Anticancer Drugs 19:65–75CrossRefPubMedGoogle Scholar
  12. 12.
    Catley L, Hideshima T, Chauhan D et al (2007) Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp Hematol 35:1038–1046CrossRefPubMedGoogle Scholar
  13. 13.
    Richardson P, Mitsiades C, Laubach J et al (2010) Lenalidomide in multiple myeloma: an evidence-based review of its role in therapy. Core Evid 4:215–245PubMedGoogle Scholar
  14. 14.
    Ferrajoli A, Lee BN, Schlette EJ et al (2008) Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 111:5291–5297CrossRefPubMedGoogle Scholar
  15. 15.
    Kotla V, Goel S, Nischal S et al (2009) Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2:36CrossRefPubMedGoogle Scholar
  16. 16.
    Dauguet N, Fournié JJ, Poupot R et al (2010) Lenalidomide down regulates the production of interferon-gamma and the expression of inhibitory cytotoxic receptors of human Natural Killer cells. Cell Immunol 264:163–170CrossRefPubMedGoogle Scholar
  17. 17.
    Görgün G, Calabrese E, Soydan E et al (2010) Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 116:3227–3237CrossRefPubMedGoogle Scholar
  18. 18.
    Chauhan D, Singh AV, Ciccarelli B et al (2010) Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115:834–845Google Scholar
  19. 19.
    Verhelle D, Corral LG, Wong K et al (2007) Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res 67:746–755CrossRefPubMedGoogle Scholar
  20. 20.
    Ximeri M, Galanopoulos A, Klaus M et al (2010) Hellenic MDS Study Group. Effect of lenalidomide therapy on hematopoiesis of patients with myelodysplastic syndrome associated with chromosome 5q deletion. Haematologica 95:406–414CrossRefPubMedGoogle Scholar
  21. 21.
    Raza A, Reeves JA, Feldman EJ et al (2008) Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111:86–93CrossRefPubMedGoogle Scholar
  22. 22.
    Sekeres MA, Maciejewski JP, Giagounidis AA et al (2008) Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 26:5943–5949CrossRefPubMedGoogle Scholar
  23. 23.
    Sekeres MA, List AF, Cuthbertson D et al (2010) Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J Clin Oncol 28:2253–2258CrossRefPubMedGoogle Scholar
  24. 24.
    Mitsiades CS, Hideshima T, Chauhan D et al (2009) Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol 46:166–175CrossRefPubMedGoogle Scholar
  25. 25.
    Schmidt-Hieber M, Busse A, Reufi B et al (2009) Bendamustine, but not fludarabine, exhibits a low stem cell toxicity in vitro. J Cancer Res Clin Oncol 135:227–234CrossRefPubMedGoogle Scholar
  26. 26.
    Blau IW, Elstner E, Waechter M et al (1989) Sensitivity of CFU-GM from normal human bone marrow and leukaemic clonogenic cells (CFU-L) from blood of patients with myelogenous leukaemia to 3′-deoxy-3′-fluorothymidine in comparison to 3′-azido-3′-deoxythymidine. Blut 59:455–457CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt-Hieber M, Dabrowski R, Weimann A et al (2010) In vitro cytotoxicity of the novel antimyeloma agents perifosine, bortezomib and lenalidomide against different cell lines. Invest New Drugs 2010 Nov 16 [Epub ahead of print].Google Scholar
  28. 28.
    Busse A, Kraus M, Na IK et al (2008) Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112:659–670CrossRefPubMedGoogle Scholar
  29. 29.
    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497Google Scholar
  30. 30.
    Crul M, Rosing H, de Klerk GJ et al (2002) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 38:1615–1621CrossRefPubMedGoogle Scholar
  31. 31.
    Papa V, Tazzari PL, Chiarini F et al (2008) Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 22:147–160CrossRefPubMedGoogle Scholar
  32. 32.
    Zonder JA, Crowley J, Hussein MA et al (2010) Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232). Blood 116:5838–5841Google Scholar
  33. 33.
    Chen N, Lau H, Kong L et al (2007) Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 47:1466–1475CrossRefPubMedGoogle Scholar
  34. 34.
    Ebert BL, Galili N, Tamayo P et al (2008) An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med 5:e35CrossRefPubMedGoogle Scholar
  35. 35.
    Pal R, Monaghan SA, Hassett AC et al (2010) Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood 115:605–614CrossRefPubMedGoogle Scholar
  36. 36.
    Reece DE, Sullivan D, Lonial S et al (2011) Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother Pharmacol 67:57–67Google Scholar
  37. 37.
    Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427CrossRefPubMedGoogle Scholar
  38. 38.
    Richardson PG, Barlogie B, Berenson J et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617CrossRefPubMedGoogle Scholar
  39. 39.
    Bramwell VH, Anderson D, Charette ML (2000) Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft-tissue sarcoma: a meta-analysis and clinical practice guideline. Sarcoma 4:103–112CrossRefPubMedGoogle Scholar
  40. 40.
    Ehninger G, Stocker HJ, Proksch B et al (1980) The pharmacokinetics of adriamycin and adriamycin-metabolites (author’s transl). Klin Wochenschr 58:927–934CrossRefPubMedGoogle Scholar
  41. 41.
    Kumar S, Giralt S, Stadtmauer EA et al (2009) International Myeloma Working Group. Mobilization in myeloma revisited: IMWG consensus perspectives on stem cell collection following initial therapy with thalidomide-, lenalidomide-, or bortezomib-containing regimens. Blood 114:1729–1735CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Schmidt-Hieber
    • 1
  • Robert Dabrowski
    • 1
  • Babette Aicher
    • 2
  • Philipp Lohneis
    • 3
  • Antonia Busse
    • 1
  • Carola Tietze-Buerger
    • 1
  • Birgit Reufi
    • 1
  • Eckhard Thiel
    • 1
  • Igor Wolfgang Blau
    • 1
  1. 1.Department of Medicine III (Hematology, Oncology and Transfusion Medicine), Charité Campus Benjamin FranklinBerlinGermany
  2. 2.Æterna Zentaris GmbHFrankfurt/MainGermany
  3. 3.Institute for Pathology, Charité Campus MitteBerlinGermany

Personalised recommendations