Skip to main content

Advertisement

Log in

Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Due to the poor prognosis and limited therapeutic options for adult patients with acute lymphoblastic leukemia (ALL), development of novel therapies is much needed to prolong patient survival and increase the efficacy of their treatment. Malignant T cells need high levels of nutrients to maintain their proliferation rate. Borrelidin, a small molecule nitrile-containing macrolide, is an inhibitor of bacterial and eukaryal threonyl-tRNA synthetase. Borrelidin-mediated inhibition of aminoacyl-tRNA synthesis, leads to an induction in the levels of uncharged tRNA, nutritional stress and ultimately inhibition of protein synthesis. The aim of the present study was to investigate whether borrelidin treatment inhibits the proliferation of malignant ALL cell lines, Jurkat and CEM cells, and study the mechanism by which this drug acts. Our results show that borrelidin was able to potently inhibit the proliferation of ALL cell lines with a half maximal inhibitory concentration of 50 ng/ml. Borrelidin showed a greater inhibitory effect on ALL cell lines compared to primary fibroblasts. Flow cytometry and western blot analysis indicated that borrelidin was able to increase the level of apoptosis and cause G1 arrest in ALL cell lines. Activation of the general control nonderepressible-2 (GCN2) kinase stress responsive pathway and induction of CHOP protein was significantly higher in ALL cell lines treated with borrelidin. These findings collectively suggest for the first time that borrelidin targets ALL cell lines by inducing apoptosis and mediating G1 arrest and that borrelidin treatment in ALL cell lines is correlated with activation of the GCN2 kinase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jabbour EJ, Faderl S, Kantarjian HM (2005) Adult acute lymphoblastic leukemia. Mayo Clin Proc 80(11):1517–1527

    Article  CAS  PubMed  Google Scholar 

  2. Pieters R, Carroll WL (2008) Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 55(1):1–20, ix

    Article  PubMed  Google Scholar 

  3. Crazzolara R, Bendall L (2009) Emerging treatments in acute lymphoblastic leukemia. Curr Cancer Drug Targets 9(1):19–31

    Article  CAS  PubMed  Google Scholar 

  4. Avramis VI, Tiwari PN (2006) Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomedicine 1(3):241–254

    CAS  PubMed  Google Scholar 

  5. Pui CH, Evans WE (1998) Acute lymphoblastic leukemia. N Engl J Med 339(9):605–615

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178

    Article  CAS  PubMed  Google Scholar 

  7. Douer D (2008) Is asparaginase a critical component in the treatment of acute lymphoblastic leukemia? Best Pract Res Clin Haematol 21(4):647–658

    Article  CAS  PubMed  Google Scholar 

  8. Ascierto PA et al (2005) Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol 23(30):7660–7668

    Article  CAS  PubMed  Google Scholar 

  9. Cheng PN et al (2007) Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res 67(1):309–317

    Article  CAS  PubMed  Google Scholar 

  10. Bunpo P et al (2009) GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J Biol Chem 284(47):32742–32749

    Article  CAS  PubMed  Google Scholar 

  11. Reinert RB et al (2006) Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparaginase. J Biol Chem 281(42):31222–31233

    Article  CAS  PubMed  Google Scholar 

  12. Anthony TG et al (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279(35):36553–36561

    Article  CAS  PubMed  Google Scholar 

  13. Crosby JS et al (2000) Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2alpha kinase. Blood 96(9):3241–3248

    CAS  PubMed  Google Scholar 

  14. Harding HP et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Article  CAS  PubMed  Google Scholar 

  15. Jiang HY et al (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24(3):1365–1377

    Article  CAS  PubMed  Google Scholar 

  16. Munn DH et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642

    Article  CAS  PubMed  Google Scholar 

  17. Kawamura T et al (2003) Anti-angiogenesis effects of borrelidin are mediated through distinct pathways: threonyl-tRNA synthetase and caspases are independently involved in suppression of proliferation and induction of apoptosis in endothelial cells. J Antibiot (Tokyo) 56(8):709–715

    Article  CAS  Google Scholar 

  18. Nagamitsu T et al (2007) Total synthesis of borrelidin. J Org Chem 72(8):2744–2756

    Article  CAS  PubMed  Google Scholar 

  19. Habibi D et al (2010) High expression of IMPACT protein promotes resistance to indoleamine 2,3-dioxygenase-induced cell death. J Cell Physiol 225(1):196–205

    Article  CAS  PubMed  Google Scholar 

  20. Jalili RB et al (2009) Mouse pancreatic islets are resistant to indoleamine 2,3 dioxygenase-induced general control nonderepressible-2 kinase stress pathway and maintain normal viability and function. Am J Pathol 174(1):196–205

    Article  CAS  PubMed  Google Scholar 

  21. Forouzandeh F et al (2008) Skin cells, but not T cells, are resistant to indoleamine 2, 3-dioxygenase (IDO) expressed by allogeneic fibroblasts. Wound Repair Regen 16(3):379–387

    Article  PubMed  Google Scholar 

  22. Ghahary A et al (2005) Differentiated keratinocyte-releasable stratifin (14-3-3 sigma) stimulates MMP-1 expression in dermal fibroblasts. J Invest Dermatol 124(1):170–177

    Article  CAS  PubMed  Google Scholar 

  23. Medyouf H et al (2010) Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 115(6):1175–1184

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong F et al (2009) NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113(8):1730–1740

    Article  CAS  PubMed  Google Scholar 

  25. Ertel IJ et al (1979) Effective dose of L-asparaginase for induction of remission in previously treated children with acute lymphocytic leukemia: a report from Childrens Cancer Study Group. Cancer Res 39(10):3893–3896

    CAS  PubMed  Google Scholar 

  26. Funahashi Y et al (1999) Establishment of a quantitative mouse dorsal air sac model and its application to evaluate a new angiogenesis inhibitor. Oncol Res 11(7):319–329

    CAS  PubMed  Google Scholar 

  27. Sauerborn M et al (2010) Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 31(2):53–59

    Article  CAS  PubMed  Google Scholar 

  28. Adluri S et al (1995) Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol Immunother 41(3):185–192

    Article  CAS  PubMed  Google Scholar 

  29. Chirino AJ, Ary ML, Marshall SA (2004) Minimizing the immunogenicity of protein therapeutics. Drug Discov Today 9(2):82–90

    Article  CAS  PubMed  Google Scholar 

  30. Ghahary A et al (2004) Expression of indoleamine 2,3-dioxygenase in dermal fibroblasts functions as a local immunosuppressive factor. J Invest Dermatol 122(4):953–964

    Article  PubMed  Google Scholar 

  31. Forouzandeh F et al (2008) Differential immunosuppressive effect of indoleamine 2,3-dioxygenase (IDO) on primary human CD4+ and CD8+ T cells. Mol Cell Biochem 309(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Tredget EE, Ghahary A (2004) Cell surface expression of MHC class I antigen is suppressed in indoleamine 2,3-dioxygenase genetically modified keratinocytes: implications in allogeneic skin substitute engraftment. Hum Immunol 65(2):114–123

    Article  CAS  PubMed  Google Scholar 

  33. Tsuchiya E et al (2010) A novel method of screening cell-cycle blockers as candidates for anti-tumor reagents using yeast as a screening tool. Biosci Biotechnol Biochem 74(2):411–414

    Article  CAS  PubMed  Google Scholar 

  34. Hao S et al (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307(5716):1776–1778

    Article  CAS  PubMed  Google Scholar 

  35. Ye J et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29(12):2082–2096

    Article  CAS  PubMed  Google Scholar 

  36. Wek RC, Staschke KA (2010) How do tumours adapt to nutrient stress? EMBO J 29(12):1946–1947

    Article  CAS  PubMed  Google Scholar 

  37. Jiang HY, Wek RC (2005) Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280(14):14189–14202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Contact grant sponsors: The Canadian Cancer Society Research Institute (CCSRI), The Cancer Research Society (CRS). Darya Habibi held University Graduate Fellowships from the University of British Columbia, CIHR/MSFHR Training Award in Transplant Research and is holding CIHR Skin Research Training Centre (SRTC) Award as well as the Roman M. Babicki Fellowship in Medical Research.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, D., Ogloff, N., Jalili, R.B. et al. Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs 30, 1361–1370 (2012). https://doi.org/10.1007/s10637-011-9700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9700-y

Keywords

Navigation