Investigational New Drugs

, Volume 30, Issue 3, pp 1096–1106 | Cite as

A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors

  • Akira Fukutomi
  • Kiyohiko Hatake
  • Kaoru Matsui
  • Sakura Sakajiri
  • Tomonori Hirashima
  • Hiromi Tanii
  • Ken Kobayashi
  • Nobuyuki Yamamoto


Objective The objective was to determine the maximum tolerated dose and the dose-limiting toxicity of panobinostat (LBH589) when administered as a single agent to adult patients with advanced solid tumors or cutaneous T-cell lymphoma whose disease had progressed despite standard therapy or for whom no standard therapy existed. Methods Panobinostat was administered orally once daily on Monday, Wednesday, and Friday of each week. A total of 13 patients were treated with one of three initial doses: 10 mg (n = 3), 15 mg (n = 4), or 20 mg (n = 6). Results No dose-limiting toxicity was observed in 12 evaluable patients. The most frequently reported adverse events, regardless of whether they were related to the study drug, were diarrhea and nausea in 10 patients (76.9%). Thrombocytopenia was reported in 12 of 13 patients (92.3%). Five of 11 patients (45.4%) had stable disease. Conclusion Panobinostat administered orally once daily on Monday, Wednesday, and Friday of each week was well tolerated at doses up to 20 mg in Japanese patients. Dose escalation did not proceed after exploration of the 20 mg dose due to emerging global clinical data at that time.


Panobinostat Histone deacetylase inhibitors Phase 1 clinical trials Cutaneous T-cell lymphoma 


  1. 1.
    Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. doi: 10.1038/nrd2133 PubMedCrossRefGoogle Scholar
  2. 2.
    Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969. doi: 10.1158/1078-0432.CCR-08-2785 PubMedCrossRefGoogle Scholar
  3. 3.
    Atadja P (2009) Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett 280:233–241. doi: 10.1016/j.canlet.2009.02.019 PubMedCrossRefGoogle Scholar
  4. 4.
    Qian DZ, Kato Y, Shabbeer S, Wei Y, Verheul HM, Salumbides B, Sanni T, Atadja P, Pili R (2006) Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res 12:634–642. doi: 10.1158/1078-0432.CCR-05-1132 PubMedCrossRefGoogle Scholar
  5. 5.
    O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B, Curly T, Moskowitz C, Portlock C, Horwitz S, Zelenetz AD, Frankel S, Richon V, Marks P, Kelly WK (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 24:166–173. doi: 10.1200/JCO.2005.01.9679 PubMedCrossRefGoogle Scholar
  6. 6.
    Shao W, Growney J, Feng Y, Wang P, Yan-Neale Y, O’Connor G, Kwon P, Yao Y, Fawell S, Atadja P (2008) Potent anticancer activity of a pan-deacetylase inhibitor panobinostat (LBH589) as a single agent in in vitro and in vivo tumor models. AACR Meeting Abstracts 2008:735Google Scholar
  7. 7.
    Ellis L, Pan Y, Smyth GK, George DJ, McCormack C, Williams-Truax R, Mita M, Beck J, Burris H, Ryan G, Atadja P, Butterfoss D, Dugan M, Culver K, Johnstone RW, Prince HM (2008) Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 14:4500–4510. doi: 10.1158/1078-0432.CCR-07-4262 PubMedCrossRefGoogle Scholar
  8. 8.
    Prince HM, George D, Patnaik A, Mita M, Dugan M, Butterfoss D, Masson E, Culver KW, Burris HA III, Beck J (2007) Phase I study of oral LBH589, a novel deacetylase (DAC) inhibitor in advanced solid tumors and non-hodgkin’s lymphoma. ASCO Meet Abstr 25:3500Google Scholar
  9. 9.
    Duvic M, Hymes K, Heald P, Breneman D, Martin AG, Myskowski P, Crowley C, Yocum RC, Bexarotene Worldwide Study Group (2001) Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol 19:2456–2471PubMedGoogle Scholar
  10. 10.
    Woo MM, Culver K, Li W, Liu A, Scott J, Parker K, Jalaluddin M, Laird G, Cooper MR, Schran HF (2008) Panobinostat (LBH589) pharmacokinetics (PK): implication for clinical safety and efficacy. Ann Oncol 19:487PGoogle Scholar
  11. 11.
    Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468. doi: 10.1200/JCO.2009.22.1291 PubMedCrossRefGoogle Scholar
  12. 12.
    Chang AN, Cantor AB, Fujiwara Y, Lodish MB, Droho S, Crispino JD, Orkin SH (2002) GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis. Proc Natl Acad Sci USA 99:9237–9242. doi: 10.1073/pnas.142302099 PubMedCrossRefGoogle Scholar
  13. 13.
    Matsuoka H, Unami A, Fujimura T, Noto T, Takata Y, Yoshizawa K, Mori H, Aramori I, Mutoh S (2007) Mechanisms of HDAC inhibitor-induced thrombocytopenia. Eur J Pharmacol 571:88–96. doi: 10.1016/j.ejphar.2007.06.015 PubMedCrossRefGoogle Scholar
  14. 14.
    Bates SE, Rosing DR, Fojo T, Piekarz RL (2006) Challenges of evaluating the cardiac effects of anticancer agents. Clin Cancer Res 12:3871–3874. doi: 10.1158/1078-0432.CCR-06-1017 PubMedCrossRefGoogle Scholar
  15. 15.
    Strevel EL, Ing DJ, Siu LL (2007) Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol 25:3362–3371. doi: 10.1200/JCO.2006.09.6925 PubMedCrossRefGoogle Scholar
  16. 16.
    Weber HA, Tai F, Paul S, Schindler J, Woo MM, Spence S, Marlowe J, Lin R (2009) QT interval measurements in patients with hematologic malignancies and solid tumors treated with oral panobinostat (LBH589). ASH Annu Meet Abstr 114:3781Google Scholar
  17. 17.
    Witt O, Monkemeyer S, Ronndahl G, Erdlenbruch B, Reinhardt D, Kanbach K, Pekrun A (2003) Induction of fetal hemoglobin expression by the histone deacetylase inhibitor apicidin. Blood 101:2001–2007. doi: 10.1182/blood-2002-08-2617 PubMedCrossRefGoogle Scholar
  18. 18.
    Wolk M, Martin JE, Reinus C (2006) Development of fetal haemoglobin-blood cells (F cells) within colorectal tumour tissues. J Clin Pathol 59:598–602. doi: 10.1136/jcp.2005.029934 PubMedCrossRefGoogle Scholar
  19. 19.
    Dickinson M, Ritchie D, DeAngelo DJ, Spencer A, Ottmann OG, Fischer T, Bhalla KN, Liu A, Parker K, Scott JW, Bishton M, Prince HM (2009) Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. Br J Haematol 147:97–101. doi: 10.1111/j.1365-2141.2009.07837.x PubMedCrossRefGoogle Scholar
  20. 20.
    San-Miguel JF, Sezer O, Siegel D, Guenther A, Mateos M, Prosser I, Cavo M, Blade J, Boccadoro M, Bengoudifa BR, Klebsattel M, Bourquelot PM, Anderson KC (2009) A Phase IB, multi-center, open-label dose-escalation study of oral panobinostat (LBH589) and I.V. Bortezomib in patients with relapsed multiple myeloma. ASH Annu Meet Abstr 114:3852Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Akira Fukutomi
    • 1
  • Kiyohiko Hatake
    • 2
  • Kaoru Matsui
    • 3
  • Sakura Sakajiri
    • 2
  • Tomonori Hirashima
    • 3
  • Hiromi Tanii
    • 4
  • Ken Kobayashi
    • 4
  • Nobuyuki Yamamoto
    • 1
  1. 1.Shizuoka Cancer CenterShizuokaJapan
  2. 2.Cancer Institute HospitalTokyoJapan
  3. 3.Osaka Prefectural Medical Center for Respiratory and Allergic DiseasesOsakaJapan
  4. 4.Novartis Pharma K.K.TokyoJapan

Personalised recommendations