Skip to main content

Advertisement

Log in

The curcuminoid CLEFMA selectively induces cell death in H441 lung adenocarcinoma cells via oxidative stress

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

CLEFMA or 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] is a curcuminoid being developed as an anticancer drug. We recently reported that it potently inhibits proliferation of various cancer cells. In this project, we investigated the effect of CLEFMA on gene expression profile in H441 lung adenocarcinoma cells, and studied its mechanism of action. In microarray data, we observed a deregulation of genes involved in redox and glutamate metabolism. Based on the affected ontologies, we hypothesized that antiproliferative activity of CLEFMA could be a result of the induction of reactive oxygen species (ROS). We tested this hypothesis by determining the levels of glutathione (GSH) and ROS in H441 cells treated with CLEFMA. We observed a rapid depletion of intracellular GSH/GSSG ratio. Using a cell-permeable fluorogenic substrate, we found that CLEFMA significantly induced ROS in a time- and dose-dependent manner (p < 0.05). Flow-cytometry with a mitochondria-selective fluorescent reporter of ROS indicated that the CLEFMA-induced ROS was of mitochondrial origin. In contrast to the cancer cells, the normal lung fibroblasts (CCL-151) did not show any increase in ROS and were resistant to CLEFMA-induced cell death. Furthermore, the addition of antioxidants, such as catalase, superoxide dismutase and N-acetylcysteine, rescued cancer cells from CLEFMA-induced cell death. Gene expression pathway analysis suggested that a transcription factor regulator Nrf2 is a pivotal molecule in the CLEFMA-induced deregulation of redox pathways. The immunoblotting of Nrf2 showed that CLEFMA treatment resulted in phosphorylation and nuclear translocation of Nrf2 in a time-dependent fashion. Based on these results, we conclude that induction of ROS is critical for the antiproliferative activity of CLEFMA and the Nrf2-mediated oxidative stress response fails to salvage H441 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lagisetty P, Powell DR, Awasthi V (2009) Synthesis and structural determination of 3, 5-bis(2-fluorobenzylidene)-4-piperidone analogs of curcumin. J Mol Str 936:23–28

    Article  CAS  Google Scholar 

  2. Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 68:1962–1969

    Article  PubMed  CAS  Google Scholar 

  3. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883

    Article  PubMed  CAS  Google Scholar 

  4. Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP (2006) Synthesis of EF24-tripeptide chloromethyl ketone: a novel curcumin-related anticancer drug delivery system. J Med Chem 49:3153–3158

    Article  PubMed  CAS  Google Scholar 

  5. Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618

    Article  PubMed  CAS  Google Scholar 

  6. Lagisetty P, Vilekar P, Sahoo K, Anant S, Awasthi V (2010) CLEFMA-an anti-proliferative curcuminoid from structure-activity relationship studies on 3, 5-bis(benzylidene)-4-piperidones. Bioorg Med Chem 18:6109–6120

    Article  PubMed  CAS  Google Scholar 

  7. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  PubMed  CAS  Google Scholar 

  8. Huncharek M, Muscat J, Geschwind JF (1999) K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis 20:1507–1510

    Article  PubMed  CAS  Google Scholar 

  9. Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23:3898–3904

    Article  PubMed  CAS  Google Scholar 

  10. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107

    Article  PubMed  CAS  Google Scholar 

  11. Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, Hittelman WN, Hong WK (1995) Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol 13:1893–1903

    PubMed  CAS  Google Scholar 

  12. Huang CL, Yokomise H, Miyatake A (2007) Clinical significance of the p53 pathway and associated gene therapy in non-small cell lung cancers. Future Oncol (London, England) 3:83–93

    Article  CAS  Google Scholar 

  13. Niklinski J, Niklinska W, Laudanski J, Chyczewska E, Chyczewski L (2001) Prognostic molecular markers in non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 34(Suppl 2):S53–S58

    Article  Google Scholar 

  14. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182

    Article  PubMed  CAS  Google Scholar 

  15. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev 8:579–591

    Article  CAS  Google Scholar 

  16. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  PubMed  CAS  Google Scholar 

  17. Landegren U (1984) Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods 67:379–388

    Article  PubMed  CAS  Google Scholar 

  18. Dozmorov I, Knowlton N, Tang Y, Shields A, Pathipvanich P, Jarvis JN, Centola M (2004) Hypervariable genes–experimental error or hidden dynamics. Nucleic Acids Res 32:e147

    Article  PubMed  Google Scholar 

  19. Dozmorov I, Lefkovits I (2009) Internal standard-based analysis of microarray data. Part 1: analysis of differential gene expressions. Nucleic Acids Res 37:6323–6339

    Article  PubMed  CAS  Google Scholar 

  20. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  21. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  PubMed  Google Scholar 

  22. Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24:203–214

    Article  PubMed  CAS  Google Scholar 

  23. Lelli JL, Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25:694–702

    Article  PubMed  CAS  Google Scholar 

  24. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    Article  PubMed  CAS  Google Scholar 

  25. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2004) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219

    Article  PubMed  CAS  Google Scholar 

  26. Fang J, Nakamura H, Iyer AK (2007) Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15:475–486

    Article  PubMed  CAS  Google Scholar 

  27. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47

    PubMed  CAS  Google Scholar 

  28. Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  PubMed  CAS  Google Scholar 

  29. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  30. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207

    Article  PubMed  CAS  Google Scholar 

  31. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  PubMed  CAS  Google Scholar 

  32. Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262

    Article  PubMed  CAS  Google Scholar 

  33. Rushmore TH, King RG, Paulson KE, Pickett CB (1990) Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci USA 87:3826–3830

    Article  PubMed  CAS  Google Scholar 

  34. Mulcahy RT, Gipp JJ (1995) Identification of a putative antioxidant response element in the 5′-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun 209:227–233

    Article  PubMed  CAS  Google Scholar 

  35. Burczynski ME, Lin HK, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614

    PubMed  CAS  Google Scholar 

  36. Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250

    Article  PubMed  CAS  Google Scholar 

  37. Singh A, Ling G, Suhasini AN, Zhang P, Yamamoto M, Navas-Acien A, Cosgrove G, Tuder RM, Kensler TW, Watson WH, Biswal S (2009) Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic Biol Med 46:376–386

    Article  PubMed  CAS  Google Scholar 

  38. Yang H, Wang J, Huang ZZ, Ou X, Lu SC (2001) Cloning and characterization of the 5′-flanking region of the rat glutamate-cysteine ligase catalytic subunit. Biochem J 357:447–455

    Article  PubMed  CAS  Google Scholar 

  39. Yang H, Wang J, Ou X, Huang ZZ, Lu SC (2001) Cloning and analysis of the rat glutamate-cysteine ligase modifier subunit promoter. Biochem Biophys Res Commun 285:476–482

    Article  PubMed  CAS  Google Scholar 

  40. Burczynski ME, Sridhar GR, Palackal NT, Penning TM (2001) The reactive oxygen species–and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha, beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1, 4-dihydroxy-2-nonene. J Biol Chem 276:2890–2897

    Article  PubMed  CAS  Google Scholar 

  41. Joseph P, Long DJ 2nd, Klein-Szanto AJ, Jaiswal AK (2000) Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 60:207–214

    Article  PubMed  CAS  Google Scholar 

  42. Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA (2000) NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem 275:5416–5424

    Article  PubMed  CAS  Google Scholar 

  43. Asher G, Lotem J, Kama R, Sachs L, Shaul Y (2002) NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 99:3099–3104

    Article  PubMed  CAS  Google Scholar 

  44. Guo X, Shin VY, Cho CH (2001) Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci 69:3113–3119

    Article  PubMed  CAS  Google Scholar 

  45. Sekhar KR, Long M, Long J, Xu ZQ, Summar ML, Freeman ML (1997) Alteration of transcriptional and post-transcriptional expression of gamma-glutamylcysteine synthetase by diethyl maleate. Radiat Res 147:592–597

    Article  PubMed  CAS  Google Scholar 

  46. Liu RM, Gao L, Choi J, Forman HJ (1998) Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am J Physiol 275:L861–L869

    PubMed  CAS  Google Scholar 

  47. Briede JJ, van Delft JM, de Kok TM, van Herwijnen MH, Maas LM, Gottschalk RW, Kleinjans JC Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci 114:193–203

  48. Clopton DA, Saltman P (1995) Low-level oxidative stress causes cell-cycle specific arrest in cultured cells. Biochem Biophys Res Commun 210:189–196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially funded by a grant from the National Cancer Institute (1R03 CA143614-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhudutta Awasthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahoo, K., Dozmorov, M.G., Anant, S. et al. The curcuminoid CLEFMA selectively induces cell death in H441 lung adenocarcinoma cells via oxidative stress. Invest New Drugs 30, 558–567 (2012). https://doi.org/10.1007/s10637-010-9610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9610-4

Keywords

Navigation