Skip to main content

Advertisement

Log in

Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) induces apoptosis in various cancer cells. Diarylheptanoids such as hirsutenone and oregonin have been shown to have anti-inflammatory and anti-tumor effects. However, it is still unknown by which mechanism diarylheptanoids induce cell death. In addition, the effect of hirsutenone on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines is unknown. To assess the apoptosis promoting effect of hirsutenone, we investigated the effect of hirsutenone on the apoptotic effect of TRAIL using the human epithelial carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced nuclear damage, decrease in Bid, Bcl-2 and Bcl-xL protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (8, 9 and 3) and increase in tumor suppressor p53 levels. Hirsutenone enhanced the TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. The results suggest that hirsutenone may enhance the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathways and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Hirsutenone may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147(3):239–248. doi:10.1038/sj.bjp.0706556

    Article  PubMed  CAS  Google Scholar 

  2. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4(12):721–729. doi:10.1016/S1470-2045(03)01277-4

    Article  PubMed  CAS  Google Scholar 

  3. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316(6):887–899. doi:10.1016/j.yexcr.2009.12.011

    Article  PubMed  CAS  Google Scholar 

  4. Wu GS (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett 285(1):1–5. doi:10.1016/j.canlet.2009.02.029

    Article  PubMed  CAS  Google Scholar 

  5. MacFarlane M (2003) TRAIL-induced signaling and apoptosis. Toxicol Lett 139(2–3):89–97. doi:10.016/S0378-4274(02)00422-8

    Article  PubMed  CAS  Google Scholar 

  6. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163. doi:10.4161/cbt.4.2.1508

    Article  PubMed  CAS  Google Scholar 

  7. Kuroyanagi M, Shimomae M, Nagashima Y, Muto N, Okuda T, Kawahara N, Nakane T, Sano T (2005) New diarylheptanoids from Alnus japonica and their antioxidative activity. Chem Pharma Bull Tokyo 53(12):1519–1523. doi:10.1248/cpb.53.1519

    Article  CAS  Google Scholar 

  8. Lee MW, Kim NY, Park MS, Ahn KH, Toh SH, Hahn DR, Kim YC, Chung HT (2000) Diarylheptanoids with in vitro inducible nitric oxide synthesis inhibitory activity from Alnus hirsuta. Planta Med 66(6):551–553. doi:10.1055/s-2000-8606

    Article  PubMed  CAS  Google Scholar 

  9. Lee SL, Huang WJ, Lin WW, Lee SS, Chen CH (2005) Preparation and anti-inflammatory activities of diarylheptanoid and diarylheptylamine analogs. Bioorg Med Chem 13(22):6175–6181. doi:10.1016/j.bmc.2005.06.058

    Article  PubMed  CAS  Google Scholar 

  10. Choi SE, Kim KH, Kwon JH, Kim SB, Kim HW, Lee MW (2008) Cytotoxic activities of diarylheptanoids from Alnus japonica. Arch Pharm Res 31(10):1287–1289. doi:10.1007/s12272-001-2108-z

    Article  PubMed  CAS  Google Scholar 

  11. Jin W, Cai XF, Na M, Lee JJ, Bae K (2007) Diarylheptanoids from Alnus hirsuta inhibit the NF-κB activation and NO and TNF-α production. Biol Pharm Bull 30(4):810–813. doi:10.1248/bpb.30.810

    Article  PubMed  CAS  Google Scholar 

  12. Joo SS, Kim MS, Oh WS, Lee DI (2002) Enhancement of NK cytotoxicity, antimetastasis and elongation effect of survival time in B16-F10 melanoma cells by oregonin. Arch Pharm Res 25(4):493–499

    Article  PubMed  CAS  Google Scholar 

  13. Lee CS, Jang ER, Kim YJ, Lee MS, Seo SJ, Lee MW (2010) Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int Immunopharmacol 10(4):520–525. doi:10.1016/j.intimp.2010.01.015

    Article  PubMed  CAS  Google Scholar 

  14. Lee CS, Ko HH, Seo SJ, Choi YW, Lee MW, Myung SC, Bang H (2009) Diarylheptanoid hirsutenone prevents tumor necrosis factor-α-stimulated production of inflammatory mediators in human keratinocytes through NF-κB inhibition. Int Immunopharmacol 9(9):1097–1104. doi:10.1016/j.intimp.2009.05.006

    Article  PubMed  CAS  Google Scholar 

  15. Kim JH, Lee KW, Lee MW, Lee HJ, Kim SH, Surh YJ (2006) Hirsutenone inhibits phorbol ester-induced upregulation of COX-2 and MMP-9 in cultured human epithelial cells: NFκB as a potential molecular target. FEBS Lett 580(2):385–392. doi:10.1016/j.febslet.2005.12.015

    Article  PubMed  CAS  Google Scholar 

  16. Högberg T, Glimelius B, Nygren P (2001) A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol 40(2–3):340–360

    Article  PubMed  Google Scholar 

  17. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  18. Andrisano V, Ballardini R, Hrelia P, Cameli N, Tosti A, Gotti R, Cavrini V (2001) Studies on the photostability and in vitro phototoxicity of Labetalol. Eur J Pharm Sci 12(4):495–504. doi:10.1016/S0928-0987(00)00218-9

    Article  PubMed  CAS  Google Scholar 

  19. Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor 1. Proc Natl Acad Sci USA 89(12):5408–5412

    Article  PubMed  CAS  Google Scholar 

  20. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11(8):897–905. doi:10.1038/sj.cdd.4401434

    Article  PubMed  CAS  Google Scholar 

  21. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002. doi:10.1038/sj.cdd.4401908

    Article  PubMed  CAS  Google Scholar 

  22. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in neurodegenerative diseases: experimental and therapeutic approaches. Meth Fin Exp Clin Pharmacol 30(1):43–65. doi:10.1358/mf.2008.30.1.1090962

    Article  CAS  Google Scholar 

  23. Czabotar PE, Colman PM, Huang DC (2009) Bax activation by Bim? Cell Death Differ 16(9):1187–1191. doi:10.1038/cdd.2009.83

    Article  PubMed  CAS  Google Scholar 

  24. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57(5):545–553. doi:10.1007/s00280-005-0111-7

    Article  PubMed  CAS  Google Scholar 

  25. Borutaite V (2010) Mitochondria as decision-makers in cell death. Environ Mol Mutagen 51:406–416. doi:10.1002/em.20564

    PubMed  CAS  Google Scholar 

  26. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13(6):921–926. doi:10.1038/sj.cdd.4401921

    Article  PubMed  CAS  Google Scholar 

  27. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80:724–730. doi:10.1016/j.bcp.2010.04.031

    Article  PubMed  CAS  Google Scholar 

  28. Zhivotovsky B, Orrenius S (2010) Cell death mechanisms: cross-talk and role in disease. Exp Cell Res 316(8):1374–1383. doi:10.1016/j.yexcr.2010.02.037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A085138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.S., Jang, ER., Kim, Y.J. et al. Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway. Invest New Drugs 30, 548–557 (2012). https://doi.org/10.1007/s10637-010-9601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9601-5

Keywords

Navigation