Skip to main content

Advertisement

Log in

The plasma and cerebrospinal fluid pharmacokinetics of sorafenib after intravenous administration in non-human primates

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose Sorafenib is a small molecule inhibitor of multiple signaling kinases thought to contribute to the pathogenesis of many tumors including brain tumors. Clinical trials with sorafenib in primary and metastatic brain tumors are ongoing. We evaluated the plasma and cerebrospinal fluid (CSF) pharmacokinetics (PK) of sorafenib after an intravenous (IV) dose in a non-human primate (NHP) model. Methods 7.3 mg/kg of sorafenib free base equivalent solubilized in 20% cyclodextrin was administered IV over 1 h to three adult rhesus monkeys. Serial paired plasma and CSF samples were collected over 24 h. Sorafenib was quantified with a validated HPLC/tandem mass spectrometry assay. PK parameters were estimated using non-compartmental methods. CSF penetration was calculated from the AUCCSF : AUCplasma. Results Peak plasma concentrations after IV dosing ranged from 3.4 to 7.6 μg/mL. The mean ± standard deviation (SD) area under the plasma concentration from 0 to 24 h was 28 ± 4.3 μg•h/mL, which is comparable to the exposure observed in humans at recommended doses. The mean ± SD clearance was 1.7 ± 0.5 mL/min/kg. The peak CSF concentrations ranged from 0.00045 to 0.00058 μg/mL. The mean ± SD area under the CSF concentration from 0 to 24h was 0.0048 ± 0.0016 μg•h/mL. The mean CSF penetration of sorafenib was 0.02% and 3.4% after correcting for plasma protein binding. Conclusion Sorafenib is well tolerated in NHP and measurable in CSF after an IV dose. The CSF penetration of sorafenib is limited relative to total and free drug exposure in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wilhelm SM et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  PubMed  CAS  Google Scholar 

  2. Lowy DR, Willumsen BM (1993) Function and regulation of ras. Annu Rev Biochem 62:851–891

    Article  PubMed  CAS  Google Scholar 

  3. Rodenhuis S (1992) Ras and human tumors. Semin Cancer Biol 3(4):241–247

    PubMed  CAS  Google Scholar 

  4. Satoh T, Kaziro Y (1992) Ras in signal transduction. Semin Cancer Biol 3(4):169–177

    PubMed  CAS  Google Scholar 

  5. Reuter CW, Morgan MA, Bergmann L (2000) Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96(5):1655–1669

    PubMed  CAS  Google Scholar 

  6. Mercer KE, Pritchard CA (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 1653(1):25–40

    PubMed  CAS  Google Scholar 

  7. Minniti G et al (2009) Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res 29(12):5171–5184

    PubMed  CAS  Google Scholar 

  8. Newton HB (2007) Small-molecule and antibody approaches to molecular chemotherapy of primary brain tumors. Curr Opin Investig Drugs 8(12):1009–1021

    PubMed  CAS  Google Scholar 

  9. Forshew T et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218(2):172–181

    Article  PubMed  CAS  Google Scholar 

  10. Tatevossian RG et al (2010) MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol 222(3):509–514

    PubMed  CAS  Google Scholar 

  11. Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  PubMed  CAS  Google Scholar 

  12. Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50(1–2):109–120

    Article  PubMed  CAS  Google Scholar 

  13. Jane EP, Premkumar DR, Pollack IF (2006) Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 319(3):1070–1080

    Article  PubMed  CAS  Google Scholar 

  14. Yang F et al (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7(11):3519–3526

    Article  PubMed  CAS  Google Scholar 

  15. McCully CL et al (1990) A rhesus monkey model for continuous infusion of drugs into cerebrospinal fluid. Lab Anim Sci 40(5):520–525

    PubMed  CAS  Google Scholar 

  16. Freireich EJ et al (1966) Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep 50(4):219–244

    PubMed  CAS  Google Scholar 

  17. Jain L et al (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46(2):362–367

    Article  PubMed  CAS  Google Scholar 

  18. Administration, U.D.o.H.a.H.S.F.a.D., Guidance for Industry, Bioanalytical Method Validation. May 2001

  19. Healthcare B. Nexavar (sorafenib) package insert. 2005: West Haven, CT

  20. Strumberg D et al (2007) Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12(4):426–437

    Article  PubMed  CAS  Google Scholar 

  21. Widemann B et al (2009) Phase I study of sorafenib in children with refractory solid tumors: a children’s oncology group phase I consortium trial. J Clin Oncol 27(15s): p. Suppl; abstr 10012

    Google Scholar 

  22. Strumberg D et al (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23(5):965–972

    Article  PubMed  CAS  Google Scholar 

  23. Awada A et al (2005) Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 92(10):1855–1861

    Article  PubMed  CAS  Google Scholar 

  24. Moore M et al (2005) Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol 16(10):1688–1694

    Article  PubMed  CAS  Google Scholar 

  25. Clark JW et al (2005) Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 11(15):5472–5480

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs S et al. Extracellular fluid concentrations of cisplatin, carboplatin, and oxaliplatin in brain, muscle, and blood measured using microdialysis in nonhuman primates. Cancer Chemother Pharmacol 65(5): 817–824

  27. Fox E et al (2002) Zidovudine concentration in brain extracellular fluid measured by microdialysis: steady-state and transient results in rhesus monkey. J Pharmacol Exp Ther 301(3):1003–1011

    Article  PubMed  CAS  Google Scholar 

  28. Valcamonico F et al (2009) Long-lasting successful cerebral response with sorafenib in advanced renal cell carcinoma. J Neurooncol 91(1):47–50

    Article  PubMed  Google Scholar 

  29. Massard C et al (2010) Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol 21(5):1247–1254

    Article  Google Scholar 

  30. Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The views expressed do not necessarily represent the views of the National Institutes of Health or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AeRang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, A., McCully, C., Cruz, R. et al. The plasma and cerebrospinal fluid pharmacokinetics of sorafenib after intravenous administration in non-human primates. Invest New Drugs 30, 524–528 (2012). https://doi.org/10.1007/s10637-010-9585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9585-1

Keywords

Navigation