Skip to main content

Advertisement

Log in

A new diaryl urea compound, D181, induces cell cycle arrest in the G1 and M phases by targeting receptor tyrosine kinases and the microtubule skeleton

  • PRECLINICAL TRIALS
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Receptor tyrosine kinases (RTKs) modulate a variety of cellular events, including cell proliferation, differentiation, mobility and apoptosis. In addition, RTKs have been validated as targets for cancer therapies. Microtubules are another class of proven targets for many clinical anticancer drugs. Here, we report that 1-(4-chloro-3-(trifluoromethyl) phenyl)-3-(2-cyano-4-hydroxyphenyl)urea (D181) functions as both a receptor tyrosine kinase inhibitor and a tubulin polymerization enhancer. D181 displayed potent inhibitory activities against a panel of RTKs, including Flt3, VEGFR, cKit, FGFR1 and PDGFRβ. D181 also enhanced tubulin polymerization and modified the secondary structure of tubulin proteins to disrupt their dynamic instability. Because of synergistic cooperation, D181 strongly inhibited the proliferation of various cancer cell lines, induced LoVo cell cycle arrest in the G1 and M phases and suppressed tumor growth in nude mice bearing human LoVo and HT29 xenografts. Our studies have provided a new, promising lead compound and novel clues for multi-target anticancer drug design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  PubMed  CAS  Google Scholar 

  2. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187

    Article  PubMed  CAS  Google Scholar 

  3. Bild AH, Nevins JR et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357

    Article  PubMed  CAS  Google Scholar 

  4. Xu AM, Huang PH (2010) Receptor tyrosine kinase coactivation networks in cancer. Cancer Res 70(10):3857–3860

    Article  PubMed  CAS  Google Scholar 

  5. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  PubMed  CAS  Google Scholar 

  6. Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28(11):1779–1802

    Article  PubMed  CAS  Google Scholar 

  7. Di Costanzo F, Fet M et al (2008) Bevacizumab in non-small cell lung cancer. Drugs 68(6):737–746

    Article  PubMed  Google Scholar 

  8. Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7(2):228–234

    Article  PubMed  CAS  Google Scholar 

  9. Druker BJ, Guilhot F et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi S, Halmos B et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792

    Article  PubMed  CAS  Google Scholar 

  11. Toyooka S, Mitsudomi T et al (2005) EGFR mutation and response of lung cancer to gefitinib. N Engl J Med 352(20):2136

    Article  PubMed  CAS  Google Scholar 

  12. Tsao MS, Shepherd FA (2005) Erlotinib in lung cancer-molecular and clinical predictors of outcome. N Engl J Med 353(2):133–144

    Article  PubMed  CAS  Google Scholar 

  13. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction–a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3(8):448–457

    Article  PubMed  CAS  Google Scholar 

  14. Luo J, Elledge SJ et al (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  PubMed  CAS  Google Scholar 

  15. Wilhelm SM, Trail PA et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activities and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  PubMed  CAS  Google Scholar 

  16. Liu L, Cao Y et al (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66(24):1851–1858

    Article  Google Scholar 

  17. Schueneman AJ, Hallahan DE et al (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63(14):4009–4016

    PubMed  CAS  Google Scholar 

  18. Xin H, Yu H et al (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513

    Article  PubMed  CAS  Google Scholar 

  19. Cleveland DW (1982) Treadmilling of tubulin and actin. Cell 28(4):689–691

    Article  PubMed  CAS  Google Scholar 

  20. Downing KH, Nogales E (1998) Tubulin and microtubule structure. Curr Opin Cell Biol 10(1):16–22

    Article  PubMed  CAS  Google Scholar 

  21. Kueh HY, Mitchison TJ (2009) Structural plasticity in actin and tubulin polymer dynamics. Science 325(5943):960–963

    Article  PubMed  CAS  Google Scholar 

  22. Nicolaou KC, Wrasidlo W et al (1993) Design, synthesis and biological activity of protaxols. Nature 364(6436):464–466

    Article  PubMed  CAS  Google Scholar 

  23. Donoso JA, Samson FE et al (1977) Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on axonal fibrillar organelles in vitro. Cancer Res 37(5):1401–1407

    PubMed  CAS  Google Scholar 

  24. Okouneva T, Hill BT (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2(5):427–436

    PubMed  CAS  Google Scholar 

  25. Shih C, Teicher BA (2001) Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Curr Pharm Des 7(13):1259–1276

    Article  PubMed  CAS  Google Scholar 

  26. Brossi A, Chignell CF et al (1983) Biological effects of modified colchicines. 2. Evaluation of catecholic colchicines, colchifolines, colchicide, and novel N-acyl- and N-aroyldeacetylcolchicines. J Med Chem 26(10):1365–1369

    Article  PubMed  CAS  Google Scholar 

  27. Muhlradt PF, Sasse F (1997) Epothilone B stabilizes microtubuli of macrophases like taxol without showing taxol-like endotoxin activity. Cancer Res 57(16):3344–3346

    PubMed  CAS  Google Scholar 

  28. Marx MA (2002) Small-molecule, tubulin-binding compounds as vascular targeting agents. Expert Opin Ther Pat 12(6):769–776

    Article  Google Scholar 

  29. Mani S, Colevas D et al (2004) The clinical development of new mitotic inhibitors that stabilize the microtubule. Anticancer Drugs 15(6):553–558

    Article  PubMed  CAS  Google Scholar 

  30. Belleri M, Presta M et al (2005) Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3, 5, 4′-trimethoxystilbene. Mol Pharmacol 67(5):1451–1459

    Article  PubMed  CAS  Google Scholar 

  31. Delmonte A, Sessa C (2009) AVE8062: a new combretastatin derivative vascular disrupting agent. Expert Opin Investig Drugs 18(10):1541–1548

    Article  PubMed  CAS  Google Scholar 

  32. Halgren TA, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  PubMed  CAS  Google Scholar 

  33. Sherman W, Farid R et al (2006) Novel procedure for modeling hLigand/Receptor induced fit effects. J Med Chem 49:534–553

    Article  PubMed  CAS  Google Scholar 

  34. Merrill GF (1998) Cell synchronization. Meth Cell Biol 57:229–249

    Article  CAS  Google Scholar 

  35. Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 30(6):1322–1331

    PubMed  CAS  Google Scholar 

  36. Fang L, Yang B et al (2008) MZ3 can induce G2/M-phase arrest and apoptosis in human leukemia cells. J Cancer Res Clin Oncol 134(12):1337–1345

    Article  PubMed  CAS  Google Scholar 

  37. Avila J, Zabala JC et al (2008) Isolation of microtubules and microtubule proteins. Curr Protoc Cell Biol 2008 Jun; Chapter 3:Unit 3.9.

  38. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89(5):392–400

    Article  PubMed  CAS  Google Scholar 

  39. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42(4):405–426

    Article  PubMed  CAS  Google Scholar 

  40. Sanz M, Löwenberg B et al (2009) FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr Opin Oncol 21(6):594–600

    Article  PubMed  CAS  Google Scholar 

  41. Pratz KW, Levis MJ (2010) Bench to bedside targeting of FLT3 in acute leukemia. Curr Drug Targets 11(7):781–789

    Article  PubMed  CAS  Google Scholar 

  42. Appelmann I, Liersch R, Kessler T (2010) Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res 180:51–81

    Article  PubMed  CAS  Google Scholar 

  43. Hellberg C, Ostman A, Heldin CH (2010) PDGF and vessel maturation. Recent Results Cancer Res 180:103–114

    Article  PubMed  CAS  Google Scholar 

  44. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11(8):1000–1017

    Article  PubMed  CAS  Google Scholar 

  45. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11):1160–1174

    Article  PubMed  CAS  Google Scholar 

  46. O’Farrell AM, Abrams TJ et al (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101(9):3597–3605

    Article  PubMed  Google Scholar 

  47. Zarrinkar PP, Gunawardane RN et al (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114(14):2984–2992

    Article  PubMed  CAS  Google Scholar 

  48. Ma J, Ding J et al (2008) The marine-derived oligosaccharide sulfate (MdOS), a novel multiple tyrosine kinase inhibitor, combats tumor angiogenesis both in vitro and in vivo. PLoS ONE 3(11):e3774

    Article  PubMed  Google Scholar 

  49. Matei D, Chang DD et al (2004) Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor alpha and Akt inactivation. Clin Cancer Res 10(2):681–690

    Article  PubMed  CAS  Google Scholar 

  50. Chen J, Higgins B et al (2007) Antitumor activity of HER1/EGFR tyrosine kinase inhibitor erlotinib, alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother Pharmacol 59(5):651–659

    Article  PubMed  CAS  Google Scholar 

  51. Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  PubMed  CAS  Google Scholar 

  52. Mahboobi S, Dove S et al (2006) Novel bis(1 H-indol-2-yl)methanones as potent inhibitors of FLT3 and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 49(11):3101–3115

    Article  PubMed  CAS  Google Scholar 

  53. Wilhelm S, Carter C et al (2006) Discovery and development of Sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Disc 5:835–845

    Article  CAS  Google Scholar 

  54. Lukas J, Bartek J (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375(6531):503–506

    Article  PubMed  CAS  Google Scholar 

  55. Lundberg AS, Weinberg RA (1996) Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclinD-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 16(12):6917–6925

    Google Scholar 

  56. Connell-Crowley L, Harper JW, Goodrich DW (1997) Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 8(2):287–301

    PubMed  CAS  Google Scholar 

  57. Lauper N, Amati B et al (1998) Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene 17(20):2637–2643

    Article  PubMed  CAS  Google Scholar 

  58. Ezhevsky SA, Dowdy SF et al (2001) Differential regulation of retinoblastoma tumor suppressor protein by G (1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol 21(14):4773–4784

    Article  PubMed  CAS  Google Scholar 

  59. Wells NJ, Hunter T et al (1999) The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci 112(Pt 19):3361–3371

    PubMed  CAS  Google Scholar 

  60. Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103(2):263–271

    Article  PubMed  CAS  Google Scholar 

  61. Jackman M, Pines J et al (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5(2):143–148

    Article  PubMed  CAS  Google Scholar 

  62. Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9(5):931–943

    Article  PubMed  CAS  Google Scholar 

  63. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234

    Article  PubMed  CAS  Google Scholar 

  64. Wang D, Siegal GP et al (2008) Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem 83(3):179–189

    Article  PubMed  CAS  Google Scholar 

  65. Nico B, Ribatti D et al (2008) Evaluation of microvascular density in tumors: pro and contra. Histol Histopathol 23(5):601–607

    PubMed  Google Scholar 

  66. Petrelli A, Giordano S (2008) From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 15(5):422–432

    Article  PubMed  CAS  Google Scholar 

  67. Morphy R, Rankovic Z (2007) Fragments, network biology and designing multiple ligands. Drug Discov Today 12(3–4):156–160

    Article  PubMed  CAS  Google Scholar 

  68. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    Article  PubMed  CAS  Google Scholar 

  69. Morphy R, Rankovic Z (2009) Designing multiple ligands—medicinal chemistry strategies and challenges. Curr Pharm Des 15(6):587–600

    Article  PubMed  CAS  Google Scholar 

  70. MacKeigan JP, Collins TS, Ting JP (2000) MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem 275(50):38953–38956

    Article  PubMed  CAS  Google Scholar 

  71. Okano J, Rustgi AK (2001) Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J Biol Chem 276(22):19555–19564

    Article  PubMed  CAS  Google Scholar 

  72. Ling X, Li F et al (2004) Induction of survivin expression by taxol (paclitaxel) is an early event, which is independent of taxol-mediated G2/M arrest. J Biol Chem 279(15):15196–15203

    Article  PubMed  CAS  Google Scholar 

  73. Yang Y, Chen R et al (2007) p38 and JNK MAPK, but not ERK1/2 MAPK, play important role in colchicine-induced cortical neurons apoptosis. Eur J Pharmacol 576(1–3):26–33

    Article  PubMed  CAS  Google Scholar 

  74. Abrams SL, McCubrey JA (2010) Enhancing therapeutic efficacy by targeting non-oncogene addicted cells with combinations of signal transduction inhibitors and chemotherapy. Cell Cycle 9(9):1839–1846

    Article  PubMed  CAS  Google Scholar 

  75. Carlier MF, Chen Y et al (1987) Synchronous oscillations in microtubule polymerization. Proc Natl Acad Sci USA 84(15):5257–5261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the 100-talent program of CAS, CAS grant (KSCX2-YWR-27), the National Natural Science Foundation (Grant # 90813033) and the National High Technology Research and Development Program (Grant # 2008AA02Z420, 2009CB940904, 2010CB529706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Ding or Duanqing Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhou, J., Ren, X. et al. A new diaryl urea compound, D181, induces cell cycle arrest in the G1 and M phases by targeting receptor tyrosine kinases and the microtubule skeleton. Invest New Drugs 30, 490–507 (2012). https://doi.org/10.1007/s10637-010-9577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9577-1

Keywords

Navigation