Skip to main content

Advertisement

Log in

Adding a combination of hydroxycitrate and lipoic acid (METABLOC™) to chemotherapy improves effectiveness against tumor development: experimental results and case report

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Altered metabolism of cancer first highlighted by Otto Warburg has a long history. Although ignored for a considerable amount of time, it is now receiving substantial attention. We recently published results obtained with a combination of two drugs, lipoic acid and hydroxycitrate, targeting metabolic enzymes particularly affected in cancer: ATP citrate lyase and pyruvate dehydrogenase kinase. This treatment was as efficient as chemotherapy in the three mouse cancer models that were tested. In this work, we asked if our drug combination could be used in conjunction with standard cytotoxic chemotherapy, in particular cisplatin, to improve basic protocol efficacy. A combination of lipoic acid and hydroxycitrate was administered to mice implanted with syngeneic cancer cells, LL/2 lung carcinoma and MBT-2 bladder carcinoma, concommitantly with classical chemotherapy (cisplatin or methotrexate). We demonstrate that the triple combination lipoic acid + hydroxycitrate + cisplatin or methotrexate is more efficient than cisplatin or methotrexate used individually or the combination of lipoic acid and hydroxycitrate administered alone. Of particular note are the results obtained in the treatment of an 80 year-old female who presented with ductal adenocarcinoma of the pancreas accompanied by liver metastases. A treatment course using gemcitabine plus α-lipoic acid and hydroxycitrate gave highly promising results. The in vivo data, coupled with the case study results, suggest a possible advantage in using a treatment targeted at cancer metabolism in association with classical chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CG (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809

    Article  PubMed  CAS  Google Scholar 

  3. Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelphs ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  4. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482. doi:10.1016/j.ccr.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  5. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. doi:10.1038/nrc1478

    Article  PubMed  CAS  Google Scholar 

  6. López-Lázaro M (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8:305–312

    Article  PubMed  Google Scholar 

  7. Pederson PL (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembranes 39:211–222. doi:10.1007/s10863-007-9094-x

    Article  Google Scholar 

  8. Mazurek S (2008) Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumors. Ernst Schering Found Symp Proc 4:99–124

    Article  Google Scholar 

  9. Dang CV (2007) The interplay between MYC and HIF in the Warburg effect. Ernest Schering Found Symp Proc 4:35–53

    Article  Google Scholar 

  10. Hatzivassiliou G, Zhao F, Bauer D, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321. doi:10.1016/j.ccr.2005.09.008

    Article  PubMed  CAS  Google Scholar 

  11. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51. doi:10.1016/j.ccr.2006.10.020

    Article  PubMed  CAS  Google Scholar 

  12. Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68:1223–1231. doi:10.1002/pros.20788

    Article  PubMed  CAS  Google Scholar 

  13. Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109:394–402. doi:10.1016/j.ygyno.2008.01.038

    Article  PubMed  CAS  Google Scholar 

  14. Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120:253–260. doi:10.1007/s10549-009-0435-9

    Article  PubMed  CAS  Google Scholar 

  15. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994. doi:10.1038/sj.bjc.6604554

    Article  PubMed  CAS  Google Scholar 

  16. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34. doi:10.1126/scitranslmed.3000677

    Article  PubMed  CAS  Google Scholar 

  17. Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277. doi:10.1038/nrc2817

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz L, Abolhassani M, Guais A, Sanders E, Steyaert JM, Campion F, Israël M (2010) A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results. Oncol Rep 23:1407–1416. doi:10.3892/or_00000778

    Article  PubMed  CAS  Google Scholar 

  19. Savage P, Stebbing J, Bower M, Crook T (2009) Why does cytotoxic chemotherapy cure only some cancers? Nat Clin Pract Oncol 6:43–52. doi:10.1038/ncponc1260

    Article  PubMed  CAS  Google Scholar 

  20. Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154

    Article  PubMed  CAS  Google Scholar 

  21. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942. doi:10.1172/JCI36843

    PubMed  CAS  Google Scholar 

  22. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080. doi:10.1126/science.1164097

    Article  PubMed  CAS  Google Scholar 

  23. Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2:38

    Article  PubMed  Google Scholar 

  24. Akao Y, Nakagawa Y, Iinuma M, Nozawa Y (2008) Anti-cancer effects of xanthones from pericarps of mangosteen. Int J Mol Sci 9:355–370

    Article  PubMed  CAS  Google Scholar 

  25. Havelka AM, Berndtsson M, Olofsson MH, Shoshan MC, Linder S (2007) Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an “off-target” effect? Mini-Rev Med Chem 7:1035–1039

    Article  PubMed  CAS  Google Scholar 

  26. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  27. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quefedo C, Perez JM (2007) Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem 7:3–18

    Article  PubMed  CAS  Google Scholar 

  28. Cullen KJ, Yang Z, Schumaker L, Guo Z (2007) Mitochondria as a critical target of the chemotherapeutic agent cisplatin in head and neck cancer. J Bioenerg Biomembr 39:43–50. doi:10.1007/s10863-006-9059-5

    Article  PubMed  CAS  Google Scholar 

  29. Fisch MJ, Howard KL, Einhorn LH, Sledge GW (1996) Relationship between platinum-DNA adducts in leukocytes of patients with advanced germ cell cancer and survival. Clin Cancer Res 2:1063–1066

    PubMed  CAS  Google Scholar 

  30. Volpato JP, Fossati E, Pelletier JN (2007) Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase. J Mol Biol 373:599–611

    Article  PubMed  CAS  Google Scholar 

  31. Li JC, Kaminskas E (1984) Accumulation of DNA strand breaks and methotrexate cytoxicity. Proc Nat Acad Sci USA 81:5694–5698. doi:10.1016/j.jmb.2007.07.076

    Article  PubMed  CAS  Google Scholar 

  32. Celtikici B, Lawrance AK, Wi Q, Rozen R (2009) Methotrexate-induced apoptosis is enhanced by altered expression of methylenetrahydrofolate reductase. Anti-Cancer Drugs 20:787–793. doi:10.1097/CAD.0b013e32832f4aa8

    Article  Google Scholar 

  33. Parmar MK, Ledermann JA, Colombo N, du Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W, Torri V, Floriani I, Jayson G, Lamont A, Tropè C, ICON and AGO Collaborators (2003) Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 36:2099–2106. doi:10.1016/S0140-6736(03)13718-X

    Google Scholar 

  34. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    Article  PubMed  CAS  Google Scholar 

  35. Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Nat Acad Sci USA 92:4507–4511

    Article  PubMed  CAS  Google Scholar 

  36. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer H-R, Cupissol D, Peyrade F, Benasso M, Vynnychenko I, De Raucourt D, Bokemeyer C, Schuelere A, Amellal N, Hitt R (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127

    Article  PubMed  CAS  Google Scholar 

  37. Chou AJ, Geller DS, Gorlick R (2008) Therapy for osteosarcoma: where do we go from here? Pediatr Drugs 10:315–327

    Article  Google Scholar 

  38. Ferrari S, Palmerini E (2007) Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol 19:341–346. doi:10.1097/CCO.0b013e328122d73f

    Article  PubMed  CAS  Google Scholar 

  39. Van Dalen EC, de Camargo B (2009) Methotrexate for high-grade osteosarcoma in children and young adults. Cochrane Database Syst Rev 1:CD006325. doi:10.1002/14651858.CD006325.pub2

    PubMed  Google Scholar 

  40. Teachey DT, Sheen C, Hall J, Ryan T, Brown VI, Fish J, Reid GSD, Seil AE, Norris R, Chang YJ, Carroll M, Grupp SA (2008) mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood 112:2020–2023. doi:10.1182/blood-2008-02-137141

    Article  PubMed  CAS  Google Scholar 

  41. Casneuf FV, Demetter P, Boterbert T, Delrue L, Peeters M, Van Damme N (2009) Antiangiogenic versus cytotoxic therapeutic approaches in a mouse model of pancreatic cancer: an experimental study with a multitarget tyrosine kinase inhibitor (sunitib), gemcitabine and radiotherapy. Oncol Rep 22:105–113. doi:10.3892/or_00000412

    Article  PubMed  CAS  Google Scholar 

  42. Squadriano M, Fazio N (2010) Chemotherapy in pancreatic adenocarcinoma. Eur Rev Med Phamacol Sci 14:386–394

    Google Scholar 

  43. Jackson L, Evers BM (2006) Chronic inflammation and pathogenesis of GI and pancreatic cancers. Cancer Treat Res 130:39–65

    Article  PubMed  CAS  Google Scholar 

  44. Lipton A, Campbell-Baird C, Witters L, Harvey H, Ali S (2010) Phase II trial of gemcitabine, irinotecan, and celecoxib in patients with advanced pancreatic cancer. J Clin Gastroenterol 44:286–288. doi:10.1097/MCG.0b013e3181cda097

    Article  PubMed  CAS  Google Scholar 

  45. Brembeck FH, Schoppmeyer K, Leupold U, Gornistu C, Keim V, Mössner J, Riecken E-O, Rosewicz S (1998) A phase II pilot trial of 13-cis retinoic acid and interferon-α in patients with advanced pancreatic carcinoma. Cancer 83:2317–2323

    Article  PubMed  CAS  Google Scholar 

  46. Michael A, Hill M, Maraveyas A, Dalgleish A, Lofts F (2007) 13-cis-Retinoic acid in combination with gemcitabine in the treatment of locally advanced and metastatic pancreatic cancer–report of a pilot phase II study. Clin Oncol (R Coll Radiol) 19:150–153

    Article  CAS  Google Scholar 

  47. Singh B, Murphy RF, Ding X-Z, Roginsky AB, Bell RH Jr, Adrian TE (2007) On the role of transforming growth factor-β in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells. Mol Cancer 6:82. doi:10.1186/1476-4598-6-82

    Article  PubMed  Google Scholar 

  48. Dong Y-W, Wang X-P, Wu K (2009) Suppression of cancer growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition. World J Gastroenterol 15:441–448. doi:10.3748/wjg.15.441

    Article  PubMed  CAS  Google Scholar 

  49. Li J, Orr B, White K, Belogortseva N, Niles R, Boskovic G, Dykes A, Park M (2009) Chmp 1A is a mediator of the anti-proliferative effects of all-trans retinoic acid in human pancreatic cancer cells. Mol Cancer 8:7. doi:10.1186/1476-4598-8-7

    Article  PubMed  Google Scholar 

  50. Ruiz-Rabelo JF, Vasquez R, Parea MD, Cruz A, Gonzalez R, Romero A, Munoz-Villanueva MC, Tunez I, Montilla P, Muntane J, Padillo FJ (2007) Beneficial properties of melatonin in an experimental model of pancreatic cancer. J Pineal Res 43:270–275. doi:10.1111/j.1600-079X.2007.00472.x

    Article  PubMed  CAS  Google Scholar 

  51. Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ, Giacosa A, Van Gossum A, Bauer J, Barber MD, Aaronson NK, Voss AC, Tisdale MJ (2003) Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486

    Article  PubMed  CAS  Google Scholar 

  52. Berkson BM, Rubin DM, Berkson AJ (2009) Revisiting the ALA/N (alpha-lipoic acid/low dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther 8:416–422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the help of Jean-Marc Steyaert. This work was funded by Biorébus.

Written consent for publication was obtained from the patient.

Competing interests

METABLOC is a trade mark of Biorébus.

AG is an employee of Biorébus. The other authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Schwartz.

Additional information

Guais Adeline and Baronzio Gianfranco contributed equally to the article

Electronic supplementary material

Supplemental tables number 1a, 1b, 2a, 2b, 3a and 3b describing the statistical results in details.

Supplementary Table 1

(DOC 39 kb)

Supplementary Table 2

(DOC 33 kb)

Supplementary Table 3

(DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guais, A., Baronzio, G., Sanders, E. et al. Adding a combination of hydroxycitrate and lipoic acid (METABLOC™) to chemotherapy improves effectiveness against tumor development: experimental results and case report. Invest New Drugs 30, 200–211 (2012). https://doi.org/10.1007/s10637-010-9552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9552-x

Keywords

Navigation