Skip to main content

Advertisement

Log in

The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Children with high-risk and recurrent neuroblastoma have poor survival rates, and novel therapies are needed. Many cancer cells have been found to preferentially employ the glycolytic pathway for energy generation, even in the presence of oxygen. 3-BrOP is a novel inhibitor of glycolysis, and has demonstrated efficacy against a wide range of tumor types. To determine whether human neuroblastoma cells are susceptible to glycolysis inhibition, we evaluated the role of 3-BrOP in neuroblastoma model systems. Neuroblastoma tumor cell lines demonstrated high rates of lactate accumulation and low rates of oxygen consumption, suggesting a potential susceptibility to inhibitors of glycolysis. In all ten human tested neuroblastoma tumor cell lines, 3-BrOP induced cell death via apoptosis in a dose and time dependent manner. Furthermore, 3-BrOP-induced depletion of ATP levels correlated with decreased neuroblastoma cell viability. In a mouse neuroblastoma xenograft model, glycolysis inhibition with 3-BrOP demonstrated significantly reduced final tumor weight. In neuroblastoma tumor cells, treatment with 3-BrOP induced mTOR activation, and the combination of 3-BrOP and mTOR inhibition with rapamycin demonstrated synergistic efficacy. Based on these results, neuroblastoma tumor cells are sensitive to treatment with inhibitors of glycolysis, and the demonstrated synergy with rapamycin suggests that the combination of glycolysis and mTOR inhibitors represents a novel therapeutic approach for neuroblastoma that warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FDG-PET:

18fluorodeoxyglucose positron-emission tomography

ATP:

adenosine triphosphate

3-BrPA:

3-bromopyruvate

2-DG:

2-deoxy-D-glucose

3-BrOP:

3-bromo-2-oxopropionate-1-propyl ester

mTOR:

mammalian target of rapamycin

PARP1:

Poly (ADP-ribose) polymerase 1

References

  1. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  2. Ladenstein R, Philip T, Lasset C, Hartmann O, Garaventa A, Pinkerton R, Michon J, Pritchard J, Klingebiel T, Kremens B, Pearson A, Coze C, Paolucci P, Frappaz D, Gadner H, Chauvin F (1998) Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of 1 year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J Clin Oncol 16:953–965

    PubMed  CAS  Google Scholar 

  3. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB, Villablanca JG (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group Study. J Clin Oncol 27:1007–1013

    Article  PubMed  CAS  Google Scholar 

  4. Zage PE, Kletzel M, Murray K, Marcus R, Castleberry R, Zhang Y, London WB, Kretschmar C (2008) Outcomes of the POG 9340/9341/9342 trial for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 51:747–753

    Article  PubMed  Google Scholar 

  5. Kushner BH, Kramer K, Meyers PA, Wollner N, Cheung NK (2000) Pilot study of topotecan and high-dose cyclophosphamide for resistant pediatric solid tumors. Med Pediatr Oncol 35:468–474

    Article  PubMed  CAS  Google Scholar 

  6. Donfrancesco A, Jenkner A, Castellano A, Ilari I, Milano GM, De Sio L, Cozza R, Fidani P, Deb G, De Laurentis C, Inserra A, Dominici C (2004) Ifosfamide/carboplatin/etoposide (ICE) as front-line, topotecan/cyclophosphamide as second-line and oral temozolomide as third-line treatment for advanced neuroblastoma over 1 year of age. Acta Paediatr Suppl 93:6–11

    Article  PubMed  CAS  Google Scholar 

  7. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  8. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  9. Gatenby RA, Gillies RJ (2004) Why do cancer cells have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  10. Postovit LM, Adams MA, Lashe GE, Heaton JP, Graham CH (2002) Oxygen-mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling pathway. J Biol Chem 277:35730–35737

    Article  PubMed  CAS  Google Scholar 

  11. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma: a predictor of prognosis. Cancer 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  12. Ahuja V, Coleman RE, Herndon J, Patz EF (1998) The prognostic significance of fluorodexoyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 83:918–924

    Article  PubMed  CAS  Google Scholar 

  13. Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, Raymond AK, Lewis VO, Anderson PM, Bassett RL, Harrell RK, Marom EM (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 50:340–347

    Article  PubMed  Google Scholar 

  14. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366

    Article  PubMed  CAS  Google Scholar 

  15. De Lena M, Lorusso V, Latorre A, Fanizza G, Gargano G, Caporusso L, Guida M, Catino A, Crucitta E, Sambiasi D, Mazzei A (2001) Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. a phase II study. Eur J Cancer 37:364–368

    Article  PubMed  Google Scholar 

  16. Papaldo P, Lopez M, Cortesi E, Cammilluzzi E, Antimi M, Terzoli E, Lepidini G, Vici P, Barone C, Feretti G, DiCosimo S, Nistico C, Carlini P, Conti F, DiLauro L, Botti C, Vitucci C, Fabi A, Giannarelli D, Marolla P (2003) Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J Clin Oncol 21:3462–3468

    Article  PubMed  CAS  Google Scholar 

  17. Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY (2003) Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol 63:81–86

    Article  PubMed  Google Scholar 

  18. Bhardway V, Rizvi N, Lai MB, Lai JC, Bhushan A (2010) Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signaling and energetics. Anticancer Res 30:743–749

    Google Scholar 

  19. Liu XH, Zheng XF, Wang YL (2009) Inhibitive effect of 3-bromopyruvic avid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction. Chin Med J 122:1681–1685

    PubMed  CAS  Google Scholar 

  20. Ihrlund LS, Hernlund E, Khan O, Shoshan MC (2008) 3-bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2:94–101

    Article  PubMed  Google Scholar 

  21. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JKV, Markowitz S, Zhou S, Diaz LA, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, Varin E, Briand M, Allouche S, Heutte N, Schwartz L, Poulain L, Icard P (2009) Novel therapy for malignant pleural mesothelioma based on anti-energetic effect: an experimental study using 3-bromopyruvate on nude mice. Anticancer Res 29:1443–1448

    PubMed  CAS  Google Scholar 

  23. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Article  PubMed  CAS  Google Scholar 

  24. Geschwind JFH, Ko YH, Torbenson MS, Magee C, Pedersen PL (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    PubMed  CAS  Google Scholar 

  25. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    Article  PubMed  CAS  Google Scholar 

  26. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  PubMed  CAS  Google Scholar 

  27. Woodward GE, Hudson MT (1954) The effect of 2-deoxy-D-glucose on glycolysis and respiration of tumour and normal tissues. Cancer Res 14:599–605

    PubMed  CAS  Google Scholar 

  28. McComb RB, Yushok WD (1964) Metabolism of ascites tumour cells III effects of 2-deoxy-D-glucose phosphorylation on phosphorous metabolism. Cancer Res 24:193–197

    PubMed  CAS  Google Scholar 

  29. Wick AN, Drury DR, Nakada HI, Wolfe JB (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224:963–969

    PubMed  CAS  Google Scholar 

  30. Karczmar GS, Arbeit JM, Toy BJ, Speder A, Weiner MW (1992) Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy. Cancer Res 52:71–76

    PubMed  CAS  Google Scholar 

  31. Maher JC, Krishan A, Lampidis TJ (2004) Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol 53:116–122

    Article  PubMed  CAS  Google Scholar 

  32. Kern KA, Norton JA (1987) Inhibition of rat fibrosarcoma growth by 2-DG. Surgery 102:380–385

    PubMed  CAS  Google Scholar 

  33. Jain VK, Kalia VK, Sharma R, Maharajan V, Menon M (1985) Effects of 2-deoxy-D-glucose on glycolysis, proliferation, kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys 11:943–950

    Article  PubMed  CAS  Google Scholar 

  34. Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P, Schwartz L, Icard P (2006) Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res 26:3561–3566

    PubMed  CAS  Google Scholar 

  35. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–34

    Article  PubMed  CAS  Google Scholar 

  36. Singh D, Benerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL, Ravindranath T, Jain V (2005) Optimizing cancer radiotherapy with 2-deoxy-D-glucose: dose escalation studies in patient with glioblastoma multiforme. Strahlenther Onkol 181:507–514

    Article  PubMed  Google Scholar 

  37. Raez LE, Langmuir V, Tolba K, Rocha-Lima CM, Papadopoulos K, Kroll S, Brawer M, Rosenblatt J, Ricart A, Lampidis T (2007) Responses to the combination of the glycolytic inhibitor 2–Deoxy–Glucose (2DG) and Docetaxel (DC) in patients with lung and head and neck (H/N) carcinomas. J Clin Oncol 25:14025

    Google Scholar 

  38. Xu R-H, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P (2005) Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells. Leukemia 19:2153–2158

    Article  PubMed  CAS  Google Scholar 

  39. Akers L, Franklin A, Fang W, Huang P, Zweidler-McKay PA (2007) The novel glycolysis inhibitor, 3-BrOP, offers a potential therapeutic approach in ALL and AML. Pediatr Blood Canc 48:636

    Google Scholar 

  40. Wangpaichitr M, Savaraj N, Maher J, Kurtoglu M, Lampidis TJ (2008) Intrinsically lower AKT, mammalian target of rapamycin, and hypoxia-inducible factor activity correlates with increased sensitivity to 2-Deoxy-D-Glucose under hypoxia in lung cancer cell lines. Mol Cancer Ther 7:1506–1513

    Article  PubMed  CAS  Google Scholar 

  41. Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33:2643–2652

    PubMed  CAS  Google Scholar 

  42. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41:4678–4686

    PubMed  CAS  Google Scholar 

  43. Reynolds CP, Tomayko MM, Donner L et al (1988) Biological classification of cell lines derived from human extra-cranial neural tumors. Prog Clin Biol Res 2:291–306

    Google Scholar 

  44. Foley J, Cohn SL, Salwen HR et al (1991) Differential expression of N-myc in phenotypically distinct subclones of a human neuroblastoma cell lines. Cancer Res 51:6338–6345

    PubMed  CAS  Google Scholar 

  45. Zage PE, Zeng L, Palla S, Fang W, Nilsson MB, Heymach JV, Zweidler-McKay PA (2010) A novel therapeutic combination for neuroblastoma: the VEGFR/EGFR/RET inhibitor vandetanib with 13-cis-retinoic acid. Cancer 116:2465–2475

    PubMed  CAS  Google Scholar 

  46. Zage PE, Graham T, Zeng L, Fang W, Pien C, Thress K, Omer C, Brown JL, Zweidler-McKay PA (2010) The selective Trk inhibitor AZ623 inhibits BDNF-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer (In Press)

  47. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    Article  PubMed  CAS  Google Scholar 

  48. Sakamoto A, Prasad KN (1972) Effect of DL-glyceraldehyde on mouse neuroblastoma cells in culture. Cancer Res 32:532–534

    PubMed  CAS  Google Scholar 

  49. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P, Roobeek I, Weis I, Voute PA, Schwab M, Versteeg R (2001) N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 20:1383–1393

    Article  PubMed  CAS  Google Scholar 

  50. Smith DJ, Cossins LR, Hatzinisiriou I, Haber M, Nagley P (2008) Lack of correlation between MYCN expression and the Warburg effect in neuroblastoma cell lines. BMC Cancer 8:259

    Article  PubMed  Google Scholar 

  51. Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biphys Acta 1787:553–560

    Article  CAS  Google Scholar 

  52. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555:14–20

    Article  PubMed  CAS  Google Scholar 

  53. Sharma S, Guthrie PH, Chan SS, Haq S, Taegtmeyer H (2007) Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovasc Res 76:71–80

    Article  PubMed  CAS  Google Scholar 

  54. Johnsen JI, Segerstrom L, Orrego A, Elfman L, Henriksson M, Kagedal B, Eksborg S, Sveinbjornsson B, Kogner P (2008) Inhibitors of mammalian target of rapamycin downregulate MYCN protein expression and inhibit neuroblastoma growth in vitro and in vivo. Oncogene 27:2910–2922

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lorrie Olivier Neuroblastoma Research Fund (to PEZ, PAZ-M). We would like to thank the members of the Zweidler-McKay lab and the Department of Pediatric Research for technical and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Zage.

Additional information

Authors Alejandro G. Levy and Peter E. Zage contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 42 kb)

High resolution image (TIFF 25500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, A.G., Zage, P.E., Akers, L.J. et al. The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma. Invest New Drugs 30, 191–199 (2012). https://doi.org/10.1007/s10637-010-9551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9551-y

Keywords

Navigation