Advertisement

Investigational New Drugs

, Volume 29, Issue 6, pp 1511–1514 | Cite as

Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma

  • Charline Gomo
  • Romain Coriat
  • Lionel Faivre
  • Olivier Mir
  • Stanislas Ropert
  • Bertrand Billemont
  • Alain Dauphin
  • Michel Tod
  • Francois Goldwasser
  • Benoit Blanchet
SHORT REPORT

Summary

Sorafenib, an orally active multi–kinase inhibitor approved for the treatment of hepatocellular carcinoma (HCC), is primarily metabolized both via cytochrome P450 3A4 isoform (CYP3A4) and UGT1A9. Due to the contribution of these two biotransformation pathways, sorafenib is considered to be less susceptible than other agents to CYP3A4 drug–drug interactions. This report discusses a clinically relevant pharmacokinetic CYP3A4 drug-drug interaction between sorafenib and felodipine in an 80-year-old Caucasian patient with HCC. On day 15, after the introduction of sorafenib (400 mg bid), sorafenib plasma concentration was at 3.6 mg/L. Felodipine (5 mg bid), an anti-hypertensive agent that is exclusively CYP3A4 substrate, was then introduced due to grade 2 sorafenib-related hypertension. On day 30, hypertension was well controlled. However, sorafenib plasma concentration was 3-fold greater (11.4 mg/L) and the patient experienced grade-3 anorexia. Since neither diarrhea nor cutaneous side effects were noticed at this time, sorafenib treatment was continued at the same daily dosage. On day 45, sorafenib plasma concentration was stable (10.8 mg/L) before declining on days 60 and 75 (7.0 mg/L and 7.4 mg/L, respectively), which was probably related to an occurrence of grade-2 diarrhea. This observation suggests a pharmacokinetic interaction involving CYP3A4 inhibition by felodipine. According to the Drug Interaction Probability Scale, this interaction was possible. Since hypertension is a common toxicity of sorafenib, clinicians should be aware of this possible interaction. The clinical relevance of pharmacokinetic interactions involving CYP3A4 inhibition in HCC patients receiving sorafenib is analyzed in this case report.

Keywords

Sorafenib CYP3A4 drug-drug interaction Felodipine Hypertension 

Notes

Acknowledgment

The authors thank Keith Riordan for helping them with the English language.

References

  1. 1.
    Kolch W, Kotwaliwale A, Vass K, Janosch P (2002) The role of raf kinases in malignant transformation. Expert Rev Mol Med 4(8):1–18PubMedCrossRefGoogle Scholar
  2. 2.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) Bay 43-9006 exhibits broad spectrum oral antitumor activity and targets the raf/mek/erk pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109PubMedCrossRefGoogle Scholar
  3. 3.
    Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, Santoro M (2006) Bay 43-9006 inhibition of oncogenic ret mutants. J Natl Cancer Inst 98(5):326–334PubMedCrossRefGoogle Scholar
  4. 4.
    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both raf and vegf and pdgf receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140PubMedCrossRefGoogle Scholar
  5. 5.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390PubMedCrossRefGoogle Scholar
  6. 6.
    Blanchet B, Billemont B, Barete S, Garrigue H, Cabanes L, Coriat R, Frances C, Knebelmann B, Goldwasser F (2010) Toxicity of sorafenib: clinical and molecular aspects. Expert Opin Drug Saf 9(2):275–287PubMedCrossRefGoogle Scholar
  7. 7.
    van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706PubMedCrossRefGoogle Scholar
  8. 8.
    Blanchet B, Billemont B, Cramard J, Benichou AS, Chhun S, Harcouet L, Ropert S, Dauphin A, Goldwasser F, Tod M (2009) Validation of an hplc-uv method for sorafenib determination in human plasma and application to cancer patients in routine clinical practice. J Pharm Biomed Anal 49(4):1109–1114PubMedCrossRefGoogle Scholar
  9. 9.
    Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P (2006) Lack of effect of ketoconazole-mediated cyp3a inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57(5):685–692PubMedCrossRefGoogle Scholar
  10. 10.
    Horn J, Hansten P, Chan L (2007) Proposal for a new tool to evaluate drug interaction cases. Ann Pharmacother 41:674–680PubMedCrossRefGoogle Scholar
  11. 11.
    Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, Douillard JY, Lathia C, Schwartz B, Taylor I, Moscovici M, Saltz LB (2006) Phase ii study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24(26):4293–4300PubMedCrossRefGoogle Scholar
  12. 12.
    Furuse J, Ishii H, Nakachi K, Suzuki E, Shimizu S, Nakajima K (2008) Phase i study of sorafenib in japanese patients with hepatocellular carcinoma. Cancer Sci 99(1):159–165PubMedGoogle Scholar
  13. 13.
    European Medicines Agency Sorafenib (nexavar): Summary of product characteristics [online]. Available from url: http://www.Emea.Europa.Eu/humandocs/pdfs/epar/nexavar/h-690-pi-en.Pdf.
  14. 14.
    Barbier O, Girard H, Inoue Y, Duez H, Villeneuve L, Kamiya A, Fruchart JC, Guillemette C, Gonzalez FJ, Staels B (2005) Hepatic expression of the ugt1a9 gene is governed by hepatocyte nuclear factor 4alpha. Mol Pharmacol 67(1):241–249PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka T, Jiang S, Hotta H, Takano K, Iwanari H, Sumi K, Daigo K, Ohashi R, Sugai M, Ikegame C, Umezu H, Hirayama Y, Midorikawa Y, Hippo Y, Watanabe A, Uchiyama Y, Hasegawa G, Reid P, Aburatani H, Hamakubo T, Sakai J, Naito M, Kodama T (2006) Dysregulated expression of p1 and p2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J Pathol 208(5):662–672PubMedCrossRefGoogle Scholar
  16. 16.
    Lazarevich NL, Cheremnova OA, Varga EV, Ovchinnikov DA, Kudrjavtseva EI, Morozova OV, Fleishman DI, Engelhardt NV, Duncan SA (2004) Progression of hcc in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology 39(4):1038–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Charline Gomo
    • 1
    • 2
  • Romain Coriat
    • 1
    • 3
    • 4
  • Lionel Faivre
    • 1
    • 2
  • Olivier Mir
    • 1
    • 3
    • 4
  • Stanislas Ropert
    • 1
    • 3
    • 4
  • Bertrand Billemont
    • 1
    • 3
  • Alain Dauphin
    • 1
    • 2
  • Michel Tod
    • 5
    • 6
  • Francois Goldwasser
    • 1
    • 3
    • 4
  • Benoit Blanchet
    • 1
    • 2
  1. 1.Centre évaluation et de recours des inhibiteurs de l’angiogénèse (CERIA)GH Cochin- Hôtel DieuParisFrance
  2. 2.Laboratoire de Pharmacologie-Toxicologie, Service de PharmacieGH Cochin- Hôtel DieuParisFrance
  3. 3.Service d’oncologie MédicaleGH Cochin- Hôtel DieuParisFrance
  4. 4.EA 1833, faculté de médecine Paris Descartes, Paris VParisFrance
  5. 5.Pharmacie, Hôpital de la Croix-RousseHospices Civils de LyonLyonFrance
  6. 6.Université de LyonLyonFrance

Personalised recommendations