Skip to main content
Log in

Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The Inhibitor of Apoptosis Proteins (IAPs) are important regulators of programmed cell death. XIAP is the most potent among them and is over-expressed in several hematological malignancies. Its activity is endogenously antagonized by SMAC/DIABLO, and also by small molecules mimicking Smac that can induce apoptosis in tumor cells. Here we describe the activity of 56 newly synthesized Smac-mimetics in human leukemic cell lines and normal CD34+ progenitor cells. Our compounds bind to XIAP with high affinity, reduce the levels of cIAP1 and are cytotoxic at nanomolar or low micromolar concentrations. Furthermore, the Smac-mimetics synergize with Cytarabine, Etoposide and especially with TRAIL in combination treatments. Apoptosis activation was clearly detectable by the occurrence of sub G1 apoptotic peak and the accumulation of cleaved PARP, caspase 8 and caspase 3. Interestingly, the down-regulation of XIAP sensitized Jurkat cells to drugs too, confirming the role of this protein in drug-resistance. In conclusion, while being very active in leukemic cells, our Smac-mimetics have modest effects on normal hematopoietic progenitors, suggesting their promising therapeutic potential as a new class of anticancer drugs in onco-hematology, particularly when combined with TRAIL, to overcome the resistance of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462. doi:10.1126/science.7878464

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407(6805):810–816. doi:10.1038/35037747

    Article  PubMed  CAS  Google Scholar 

  3. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1(2):111–121. doi:10.1038/nrd726

    Article  PubMed  CAS  Google Scholar 

  4. Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13(3):239–252

    Article  PubMed  CAS  Google Scholar 

  5. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3(6):401–410. doi:10.1038/nrm830

    Article  PubMed  CAS  Google Scholar 

  6. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104(5):781–790. doi:10.1016/S0092-8674(01)00273-2

    PubMed  CAS  Google Scholar 

  7. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    PubMed  CAS  Google Scholar 

  8. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102(1):43–53. doi:10.1016/S0092-8674(00)00009-X

    Article  PubMed  CAS  Google Scholar 

  9. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42. doi:10.1016/S0092-8674(00)00008-8

    Article  PubMed  CAS  Google Scholar 

  10. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408(6815):1004–1008. doi:10.1038/35050006

    Article  PubMed  CAS  Google Scholar 

  11. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012. doi:10.1038/35050012

    Article  PubMed  CAS  Google Scholar 

  12. Zhang B, Nikolovska-Coleska Z, Zhang Y, Bai L, Qiu S, Yang CY, Sun H, Wang S, Wu Y (2008) Design, synthesis, and evaluation of tricyclic, conformationally constrained small-molecule mimetics of second mitochondria-derived activator of caspases. J Med Chem 51(23):7352–7355. doi:10.1021/jm801146d

    Article  PubMed  CAS  Google Scholar 

  13. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, Sage D, Slisz J, Tran M, Straub C, Ramsey T, Iourgenko V, Huang A, Chen Y, Schlegel R, Labow M, Fawell S, Sellers WR, Zawel L (2007) A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 67(24):11493–11498. doi:10.1158/0008-5472.CAN-07-5173

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305(5689):1471–1474. doi:10.1126/science.1098231

    Article  PubMed  CAS  Google Scholar 

  15. Sun H, Nikolovska-Coleska Z, Yang CY, Xu L, Liu M, Tomita Y, Pan H, Yoshioka Y, Krajewski K, Roller PP, Wang S (2004) Structure-based design of potent, conformationally constrained Smac mimetics. J Am Chem Soc 126(51):16686–16687. doi:10.1021/ja047438+

    Article  PubMed  CAS  Google Scholar 

  16. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798. doi:10.1038/nrc2465

    Article  PubMed  CAS  Google Scholar 

  17. Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 68(22):9384–9393. doi:10.1158/0008-5472.CAN-08-2655

    Article  PubMed  CAS  Google Scholar 

  18. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12(5):445–456. doi:10.1016/j.ccr.2007.08.029

    Article  PubMed  CAS  Google Scholar 

  19. Sun H, Nikolovska-Coleska Z, Yang CY, Qian D, Lu J, Qiu S, Bai L, Peng Y, Cai Q, Wang S (2008) Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc Chem Res 41(10):1264–1277. doi:10.1021/ar8000553

    Article  PubMed  CAS  Google Scholar 

  20. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681. doi:10.1016/j.cell.2007.10.030

    Article  PubMed  CAS  Google Scholar 

  21. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693. doi:10.1016/j.cell.2007.10.037

    Article  PubMed  CAS  Google Scholar 

  22. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703. doi:10.1016/j.cell.2008.03.036

    Article  PubMed  CAS  Google Scholar 

  23. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118(6):1979–1990. doi:10.1172/JCI34359

    Article  PubMed  CAS  Google Scholar 

  24. Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D, Pelosi E, Vitale A, Chierichini A, Cedrone M, Foa R, Lo Coco F, Peschle C, Testa U (2005) TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 90(5):612–624

    PubMed  CAS  Google Scholar 

  25. Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113(8):1710–1722. doi:10.1182/blood-2007-09-114314

    Article  PubMed  CAS  Google Scholar 

  26. Seneci P, Bianchi A, Battaglia C, Belvisi L, Bolognesi M, Caprini A, Cossu F, Franco E, Matteo M, Delia D, Drago C, Khaled A, Lecis D, Manzoni L, Marizzoni M, Mastrangelo E, Milani M, Motto I, Moroni E, Potenza D, Rizzo V, Servida F, Turlizzi E, Varrone M, Vasile F, Scolastico C (2009) Rational design, synthesis and characterization of potent, non-peptidic Smac mimics/XIAP inhibitors as proapoptotic agents for cancer therapy. Bioorg Med Chem 17(16):5834–5856. doi:10.1016/j.bmc.2009.07.009

    Article  PubMed  CAS  Google Scholar 

  27. Cossu F, Milani M, Mastrangelo E, Vachette P, Servida F, Lecis D, Canevari G, Delia D, Drago C, Rizzo V, Manzoni L, Seneci P, Scolastico C, Bolognesi M (2009) Structural basis for bivalent smac-mimetics recognition in the IAP protein family. J Mol Biol 392(3):630–644. doi:10.1016/j.jmb.2009.04.033

    Article  PubMed  CAS  Google Scholar 

  28. Nikolovska-Coleska Z, Wang R, Fang X, Pan H, Tomita Y, Li P, Roller PP, Krajewski K, Saito NG, Stuckey JA, Wang S (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332(2):261–273. doi:10.1016/j.ab.2004.05.055

    Article  PubMed  CAS  Google Scholar 

  29. Kern DH, Morgan CR, Hildebrand-Zanki SU (1988) In vitro pharmacodynamics of 1-beta-D-arabinofuranosylcytosine: synergy of antitumor activity with cis-diamminedichloroplatinum(II). Cancer Res 48(1):117–121

    PubMed  CAS  Google Scholar 

  30. Fulda S (2009) Inhibitor of apoptosis proteins in hematological malignancies. Leukemia 23(3):467–476. doi:10.1038/leu.2008.329

    Article  PubMed  CAS  Google Scholar 

  31. Sun H, Nikolovska-Coleska Z, Lu J, Qiu S, Yang CY, Gao W, Meagher J, Stuckey J, Wang S (2006) Design, synthesis, and evaluation of a potent, cell-permeable, conformationally constrained second mitochondria derived activator of caspase (Smac) mimetic. J Med Chem 49(26):7916–7920. doi:10.1021/jm061108d

    Article  PubMed  CAS  Google Scholar 

  32. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815. doi:10.1038/nm735

    PubMed  CAS  Google Scholar 

  33. Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63(4):831–837

    PubMed  CAS  Google Scholar 

  34. Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, Oleksijew A, Oltersdorf T, Rosenberg SH, Shoemaker AR, Tomaselli KJ, Zou H, Fesik SW (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47(18):4417–4426. doi:10.1021/jm040037k

    Article  PubMed  CAS  Google Scholar 

  35. Wu H, Tschopp J, Lin SC (2007) Smac mimetics and TNFalpha: a dangerous liaison? Cell 131(4):655–658. doi:10.1016/j.cell.2007.10.042

    Article  PubMed  CAS  Google Scholar 

  36. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Moller P, Gschwend JE, Simmet T, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 69(6):2425–2434. doi:10.1158/0008-5472.CAN-08-2436

    Article  PubMed  CAS  Google Scholar 

  37. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821. doi:10.1126/science.277.5327.818

    Article  PubMed  CAS  Google Scholar 

  38. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682. doi:10.1016/1074-7613(95)90057-8

    Article  PubMed  CAS  Google Scholar 

  39. Zhang XD, Nguyen T, Thomas WD, Sanders JE, Hersey P (2000) Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett 482(3):193–199. doi:10.1016/S0014-5793(00)02042-1

    Article  PubMed  CAS  Google Scholar 

  40. Wajant H, Pfizenmaier K, Scheurich P (2002) TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis 7(5):449–459. doi:10.1023/A:1020039225764

    Article  PubMed  CAS  Google Scholar 

  41. Klener P Jr, Leahomschi S, Molinsky J, Simonova T, Necas E, Gasova Z, Cermak J, Dolezalova L, Andera L, Zivny J (2009) TRAIL-induced apoptosis of HL60 leukemia cells: two distinct phenotypes of acquired TRAIL resistance that are accompanied with resistance to TNFalpha but not to idarubicin and cytarabine. Blood Cells Mol Dis 42(1):77–84. doi:10.1016/j.bcmd.2008.10.002

    Article  PubMed  CAS  Google Scholar 

  42. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163. doi:10.1038/5517

    Article  PubMed  CAS  Google Scholar 

  43. Plasilova M, Zivny J, Jelinek J, Neuwirtova R, Cermak J, Necas E, Andera L, Stopka T (2002) TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 16(1):67–73. doi:10.1038/sj.leu.2402338

    Article  PubMed  CAS  Google Scholar 

  44. Bilim V, Yuuki K, Itoi T, Muto A, Kato T, Nagaoka A, Motoyama T, Tomita Y (2008) Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis. Br J Cancer 98(5):941–949. doi:10.1038/sj.bjc.6604268

    Article  PubMed  CAS  Google Scholar 

  45. Ndozangue-Touriguine O, Sebbagh M, Merino D, Micheau O, Bertoglio J, Breard J (2008) A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27(46):6012–6022. doi:10.1038/onc.2008.197

    Article  PubMed  CAS  Google Scholar 

  46. Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, Andreeff M, Schober WD, Nefzi A, Pond GR, Mawji IA, Houghten RA, Ostresh J, Brandwein J, Minden MD, Schuh AC, Wells RA, Messner H, Chun K, Reed JC, Schimmer AD (2005) Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105(10):4043–4050. doi:10.1182/blood-2004-08-3168

    Article  PubMed  CAS  Google Scholar 

  47. Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A, Zawel L, Tran M, Cools J, Gilliland G, Mitsiades C, McMillin DW, Jiang J, Hall-Meyers E, Griffin JD (2007) Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 6(7):1951–1961. doi:10.1158/1535-7163.MCT-06-0810

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Henning Walczak, Imperial College, London, UK for providing IZ TRAIL and Dr H. Kashkar, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany for providing lentiviral vectors.

This work was partially supported by Associazione Italiana contro le Leucemie, Linfomi e Mieloma (AIL), sezione di Milano, Milan, Italy and in part by grants from Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Rome, Italy), Alleanza Contro il Cancro (Rome, Italy), and Michelangelo Foundation for Advances in Cancer Research and Treatment (Milano, Italy) to CC-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Servida.

Additional information

Domenico Delia and Francesco Onida contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Servida, F., Lecis, D., Scavullo, C. et al. Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis. Invest New Drugs 29, 1264–1275 (2011). https://doi.org/10.1007/s10637-010-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9475-6

Keywords

Navigation