Skip to main content
Log in

Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodobenzamides or analogs are known to possess specific affinity for melanoma tissue. New heteroaromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using 125I, which emits Auger electrons and gives high-energy, localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with 125I, the two compounds induced in vitro a significant radiotoxicity to B16F0 melanoma cells. Nevertheless, the acridine compound appeared more radiotoxic than the acridone compound. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with acridone derivative, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. In conclusion, the acridine derivative with a higher nuclear localization appeared a better candidate for application in targeted radionuclide therapy using 125I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jennings L, Murphy GM (2009) Predicting outcome in melanoma: where are we now? Br J Dermatol 161:496–503

    Article  PubMed  CAS  Google Scholar 

  2. Garbe C, Eigentler TK (2007) Diagnosis and treatment of cutaneous melanoma: state of the art 2006. Melanoma Res 17:117–127

    Article  PubMed  Google Scholar 

  3. Agarwala SS, Becker JC, Eggermont AM, Flaherty KT, Garbe C, Goldstein AM, Halpern A, Kashani-Sabet M, Hauschild A, Kirkwood JM et al (2009) Meeting report: consensus from the first and second Global Workshops in Melanoma November 19-20, 2008. Pigment Cell Melanoma Res 22:532–543

    Article  PubMed  Google Scholar 

  4. Helmbach H, Rossmann E, Kern MA, Schadendorf D (2001) Drug-resistance in human melanoma. Int J Cancer 93:617–622

    Article  PubMed  CAS  Google Scholar 

  5. Lui P, Cashin R, Machado M, Hemels M, Corey-Lisle PK, Einarson TR (2007) Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treat Rev 33:665–680

    Article  PubMed  Google Scholar 

  6. Olivier KR, Schild SE, Morris CG, Brown PD, Markovic SN (2007) A higher radiotherapy dose is associated with more durable palliation and longer survival in patients with metastatic melanoma. Cancer 110:1791–1795

    Article  PubMed  Google Scholar 

  7. Rizvi SM, Qu CF, Song YJ, Raja C, Allen BJ (2005) In vivo studies of pharmacokinetics and efficacy of Bismuth-213 labeled antimelanoma monoclonal antibody 9.2.27. Cancer Biol Ther 4:763–768

    Article  PubMed  CAS  Google Scholar 

  8. Dadachova E, Revskaya E, Sesay MA, Damania H, Boucher R, Sellers RS, Howell RC, Burns L, Thornton GB, Natarajan A et al (2008) Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther 7:1116–1127

    Article  PubMed  CAS  Google Scholar 

  9. Miao Y, Owen NK, Whitener D, Gallazzi F, Hoffman TJ, Quinn TP (2002) In vivo evaluation of 188Re-labeled alpha-melanocyte stimulating hormone peptide analogs for melanoma therapy. Int J Cancer 101:480–487

    Article  PubMed  CAS  Google Scholar 

  10. Miao Y, Owen NK, Fisher DR, Hoffman TJ, Quinn TP (2005) Therapeutic efficacy of a 188Re-labeled alpha-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med 46:121–129

    PubMed  CAS  Google Scholar 

  11. Miao Y, Shelton T, Quinn TP (2007) Therapeutic efficacy of a 177Lu-labeled DOTA conjugated alpha-melanocyte-stimulating hormone peptide in a murine melanoma-bearing mouse model. Cancer Biother Radiopharm 22:333–341

    Article  PubMed  CAS  Google Scholar 

  12. Link EM (1999) Targeting melanoma with 211At/131I-methylene blue: preclinical and clinical experience. Hybridoma 18:77–82

    Article  PubMed  CAS  Google Scholar 

  13. Eisenhut M, Hull WE, Mohammed A, Mier W, Lay D, Just W, Gorgas K, Lehmann WD, Haberkorn U (2000) Radioiodinated N-(2-diethylaminoethyl)benzamide derivatives with high melanoma uptake: structure-affinity relationships, metabolic fate, and intracellular localization. J Med Chem 43:3913–3922

    Article  PubMed  CAS  Google Scholar 

  14. Moins N, D'Incan M, Bonafous J, Bacin F, Labarre P, Moreau MF, Mestas D, Noirault E, Chossat F, Berthommier E et al (2002) 123I-N-(2-diethylaminoethyl)-2-iodobenzamide: a potential imaging agent for cutaneous melanoma staging. Eur J Nucl Med Mol Imaging 29:1478–1484

    Article  PubMed  CAS  Google Scholar 

  15. Edreira MM, Pozzi OR (2006) Iodide benzamides for the in-vivo detection of melanoma and metastases. Melanoma Res 16:37–43

    Article  PubMed  CAS  Google Scholar 

  16. Pham TQ, Greguric I, Liu X, Berghofer P, Ballantyne P, Chapman J, Mattner F, Dikic B, Jackson T, Loc'h C et al (2007) Synthesis and evaluation of novel radioiodinated benzamides for malignant melanoma. J Med Chem 50:3561–3572

    Article  PubMed  CAS  Google Scholar 

  17. Michelot JM, Moreau MF, Veyre AJ, Bonafous JF, Bacin FJ, Madelmont JC, Bussiere F, Souteyrand PA, Mauclaire LP, Chossat FM et al (1993) Phase II scintigraphic clinical trial of malignant melanoma and metastases with iodine-123-N-(2-diethylaminoethyl 4-iodobenzamide). J Nucl Med 34:1260–1266

    PubMed  CAS  Google Scholar 

  18. Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC et al (2008) Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 51:3133–3144

    Article  PubMed  CAS  Google Scholar 

  19. Bonnet-Duquennoy M, Papon J, Mishellany F, Labarre P, Guerquin-Kern JL, Wu TD, Gardette M, Maublant J, Penault-Llorca F, Miot-Noirault E et al (2009) Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I-labelled potential agent. Int J Cancer 125:708–716

    Article  PubMed  CAS  Google Scholar 

  20. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46(Suppl 1):4S–12S

    PubMed  Google Scholar 

  21. Barendswaard EC, Humm JL, O'Donoghue JA, Sgouros G, Finn RD, Scott AM, Larson SM, Welt S (2001) Relative therapeutic efficacy of (125)I- and (131)I-labeled monoclonal antibody A33 in a human colon cancer xenograft. J Nucl Med 42:1251–1256

    PubMed  CAS  Google Scholar 

  22. Ickenstein LM, Edwards K, Sjoberg S, Carlsson J, Gedda L (2006) A novel 125I-labeled daunorubicin derivative for radionuclide-based cancer therapy. Nucl Med Biol 33:773–783

    Article  PubMed  CAS  Google Scholar 

  23. Kassis AI, Sastry KS, Adelstein SJ (1987) Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. Radiat Res 109:78–89

    Article  PubMed  CAS  Google Scholar 

  24. Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB (2006) Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 33:1352–1363

    Article  PubMed  Google Scholar 

  25. Ghirmai S, Mume E, Tolmachev V, Sjoberg S (2005) Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydr Res 340:15–24

    Article  PubMed  CAS  Google Scholar 

  26. Karagiannis TC, Lobachevsky PN, Martin RF (2000) Cytotoxicity of an 125I-labelled DNA ligand. Acta Oncologica (Stockholm, Sweden) 39:681–685

    Article  CAS  Google Scholar 

  27. Belmont P, Bosson J, Godet T, Tiano M (2007) Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 7:139–169

    Article  PubMed  CAS  Google Scholar 

  28. Desbois N, Gardette M, Papon J, Labarre P, Maisonial A, Auzeloux P, Lartigue C, Bouchon B, Debiton E, Blache Y et al (2008) Design, synthesis and preliminary biological evaluation of acridine compounds as potential agents for a combined targeted chemo-radionuclide therapy approach to melanoma. Bioorg Med Chem 16:7671–7690

    Article  PubMed  CAS  Google Scholar 

  29. Bielawski K, Winnicka K, Bielawska A (2006) Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by ouabain, digoxin and proscillaridin A. Biol Pharm Bull 29:1493–1497

    Article  PubMed  CAS  Google Scholar 

  30. Peixoto P, Zeghida W, Carrez D, Wu TD, Wattez N, Croisy A, Demeunynck M, Guerquin-Kern JL, Lansiaux A (2009) Unusual cellular uptake of cytotoxic 4-hydroxymethyl-3-aminoacridine. Eur J Med Chem 44:4758–4763

    Article  PubMed  CAS  Google Scholar 

  31. Wolf M, Bauder-Wust U, Eskerski H, Bauer C, Eisenhut M (2007) Role of acidic cell organelles in the higher nonmelanoma retention of melanoma markers based on N-(2-dialkylaminoethyl)benzamides and the cytotoxicity of alkylating benzamides. Melanoma Res 17:61–73

    Article  PubMed  CAS  Google Scholar 

  32. Finlay GJ, Riou JF, Baguley BC (1996) From amsacrine to DACA (N-[2-(dimethylamino)ethyl]acridine-4-carboxamide): selectivity for topoisomerases I and II among acridine derivatives. Eur J Cancer 32A:708–714

    Article  PubMed  CAS  Google Scholar 

  33. Rapp M, Maurizis JC, Papon J, Labarre P, Wu TD, Croisy A, Guerquin-Kern JL, Madelmont JC, Mounetou E (2008) A new O6-alkylguanine-DNA alkyltransferase inhibitor associated with a nitrosourea (cystemustine) validates a strategy of melanoma-targeted therapy in murine B16 and human-resistant M4Beu melanoma xenograft models. J Pharmacol Exp Ther 326:171–177

    Article  PubMed  CAS  Google Scholar 

  34. Baguley BC, Denny WA, Atwell GJ, Cain BF (1981) Potential antitumor agents. 34. Quantitative relationships between DNA binding and molecular structure for 9-anilinoacridines substituted in the anilino ring. J Med Chem 24:170–177

    Article  PubMed  CAS  Google Scholar 

  35. Labarre P, Papon J, Rose AH, Guerquin-Kern JL, Morandeau L, Wu TD, Moreau MF, Bayle M, Chezal JM, Croisy A et al (2008) Melanoma affinity in mice and immunosuppressed sheep of [(125)I]N-(4-dipropylaminobutyl)-4-iodobenzamide, a new targeting agent. Nucl Med Biol 35:783–791

    Article  PubMed  CAS  Google Scholar 

  36. Urashima T, Nagasawa H, Wang K, Adelstein SJ, Little JB, Kassis AI (2006) Induction of apoptosis in human tumor cells after exposure to Auger electrons: comparison with gamma-ray exposure. Nucl Med Biol 33:1055–1063

    Article  PubMed  CAS  Google Scholar 

  37. Labarre P, Papon J, Moreau MF, Moins N, Bayle M, Veyre A, Madelmont JC (2002) Melanin affinity of N-(2-diethylaminoethyl)-4-iodobenzamide, an effective melanoma imaging agent. Melanoma Res 12:115–121

    Article  PubMed  CAS  Google Scholar 

  38. Chen KG, Valencia JC, Lai B, Zhang G, Paterson JK, Rouzaud F, Berens W, Wincovitch SM, Garfield SH, Leapman RD et al (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103:9903–9907

    Article  PubMed  CAS  Google Scholar 

  39. Boyd M, Ross SC, Dorrens J, Fullerton NE, Tan KW, Zalutsky MR, Mairs RJ (2006) Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J Nucl Med 47:1007–1015

    PubMed  CAS  Google Scholar 

  40. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159:471–483

    Article  PubMed  CAS  Google Scholar 

  41. Michel RB, Brechbiel MW, Mattes MJ (2003) A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med 44:632–640

    PubMed  CAS  Google Scholar 

  42. Pouget JP, Santoro L, Raymond L, Chouin N, Bardies M, Bascoul-Mollevi C, Huguet H, Azria D, Kotzki PO, Pelegrin M et al (2008) Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res 170:192–200

    Article  PubMed  CAS  Google Scholar 

  43. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki PO, Pelegrin M, Navarro-Teulon I, Pelegrin A, Pouget JP (2009) Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med 50:2033–2041

    Article  PubMed  Google Scholar 

  44. Moins N, Papon J, Seguin H, Gardette D, Moreau MF, Labarre P, Bayle M, Michelot J, Gramain JC, Madelmont JC et al (2001) Synthesis, characterization and comparative biodistribution study of a new series of p-iodine-125 benzamides as potential melanoma imaging agents. Nucl Med Biol 28:799–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank: Danièle CARREZ, Ing., U 759 Inserm/Curie, Orsay, for her technical support. The authors are grateful to the Inserm and the Région Auvergne for awarding Maryline Gardette research grants, and the French “Agence Nationale de la Recherche” and the “Ligue Régionale contre le Cancer” for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Moins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardette, M., Papon, J., Bonnet, M. et al. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 125I, an Auger electron emitter. Invest New Drugs 29, 1253–1263 (2011). https://doi.org/10.1007/s10637-010-9471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9471-x

Keywords

Navigation