Skip to main content
Log in

Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Platinum(II) metallointercalators represent a new class of DNA-damaging antitumor complexes active in cisplatin- and oxaliplatin-resistant cell lines. In the first part of our work, we have screened in vitro a serie of 18 metallointercalators with the structure [Pt(AL)(IL)]2+ where AL = ethylenediamine (EN) or diaminocyclohexane in R,R- (RR) or S,S- (SS) configuration ; and IL = 1,10-phenanthroline with different degree of methylation : no methylation (PHEN), mono-methylated in position 4 (4ME) or 5 (5ME), or di-methylated in positions 4 and 7 (47ME) or in positions 5 and 6 (56ME) or tetramethylated in positions 3,4,7 and 8 (3478ME). Eight compounds: PHENEN, 56MEEN, 47MERR, 56MERR, 4MESS, 5MESS, 47MESS and 56MESS exhibited significant cytotoxic effect, equivalent or higher than cisplatin, oxaliplatin or carboplatin in the human HCT8 colon and IGROV1 ovarian cancer cell lines for both 1 and 24 h incubation time. The high cytotoxicity of the most active compound, the 56MESS, could be related to the hydrophobicity of the phenanthroline ligand that increases cellular uptake in human HCT8, HT29 (colon) and IGROV1 (ovarian) as well as in rat PROb colon cell lines. Unfortunately, intravenous or intraperitoneal administration of 56MESS had no antitumoral activity in BD-IX rats with peritoneal carcinomatosis induced by an intraperitoneal PROb cells inoculation. Moreover, 56MESS displayed nephrotoxicity at pharmacological dose. Thus, these data query the in vivo/in vitro correlation and reconsider the place of the in vivo screening to select adequate candidate drug for further preclinical and clinical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584. doi:10.1038/nrc2167

    Article  PubMed  CAS  Google Scholar 

  2. Kostova I (2006) Platinum complexes as anticancer agents. Recent Patents Anticancer Drg Discov 1(1):1–22. doi:10.2174/157489206775246458

    Article  CAS  Google Scholar 

  3. Desoize B, Madoulet C (2002) Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol 42(3):317–325. doi:10.1016/S1040-8428(01)00219-0

    Article  PubMed  Google Scholar 

  4. Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem Biol 7(4):481–489. doi:10.1016/S1367-5931(03)00081-4

    Article  PubMed  CAS  Google Scholar 

  5. Heffeter P, Jungwirth U, Jakupec M, Hartinger C, Galanski M, Elbling L, Micksche M, Keppler B, Berger W (2008) Resistance against novel anticancer metal compounds: differences and similarities. Drug Resist Updat 11(1–2):1–16. doi:10.1016/j.drup.2008.02.002

    Article  PubMed  CAS  Google Scholar 

  6. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63(1):12–31. doi:10.1016/j.critrevonc.2007.02.001

    Article  PubMed  Google Scholar 

  7. Montana AM, Batalla C (2009) The rational design of anticancer platinum complexes: the importance of the structure-activity relationship. Curr Med Chem 16(18):2235–2260. doi:10.2174/092986709788453087

    Article  PubMed  CAS  Google Scholar 

  8. Baruah H, Barry CG, Bierbach U (2004) Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr Top Med Chem 4(15):1537–1549. doi:10.2174/1568026043387313

    Article  PubMed  CAS  Google Scholar 

  9. Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun (Camb) 44:4565–4579. doi:10.1039/b710949k

    Article  Google Scholar 

  10. Fisher DM, Bednarski PJ, Grunert R, Turner P, Fenton RR, Aldrich-Wright JR (2007) Chiral platinum(II) metallointercalators with potent in vitro cytotoxic activity. ChemMedChem 2(4):488–495. doi:10.1002/cmdc.200600211

    Article  PubMed  CAS  Google Scholar 

  11. Kemp S, Wheate NJ, Buck DP, Nikac M, Collins JG, Aldrich-Wright JR (2007) The effect of ancillary ligand chirality and phenanthroline functional group substitution on the cytotoxicity of platinum(II)-based metallointercalators. J Inorg Biochem 101(7):1049–1058. doi:10.1016/j.jinorgbio.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  12. Krause-Heuer AM, Grunert R, Kuhne S, Buczkowska M, Wheate NJ, Le Pevelen DD, Boag LR, Fisher DM, Kasparkova J, Malina J, Bednarski PJ et al (2009) Studies of the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells. J Med Chem 52(17):5474–5484. doi:10.1021/jm9007104

    Article  PubMed  CAS  Google Scholar 

  13. Brodie CR, Collins JG, Aldrich-Wright JR (2004) DNA binding and biological activity of some platinum(II) intercalating compounds containing methyl-substituted 1, 10-phenanthrolines. Dalton Trans 8:1145–1152. doi:10.1039/b316511f

    Article  PubMed  Google Scholar 

  14. Jaramillo D, Damian PB, Collins JG, Fenton RR, Stootman FH, Wheate NJ, Aldrich-Wright J (2006) Synthesis, characterisation and biological activity of chiral platinum(II) complexes. Eur J Inorg Chem 4:839–849. doi:10.1002/ejic.200500932

    Article  Google Scholar 

  15. Koshiyama T, Kato M (2003) [(1R, 2R)-1, 2-diaminocyclohexane-kappa(2)N, N'](alpha-diimine-kappa(2)N, N')p latinum(II) bis(hexafluorophosphate), where alpha-diimine is 2, 2'-bipyridine and 1, 10-phenanthroline. Acta Crystallogr C 59(Pt 11):m446–449. doi:10.1107/S0108270103020869

    Article  PubMed  Google Scholar 

  16. Cusumano M, Di Pietro ML, Giannetto A (2006) DNA interaction of platinum(II) complexes with 1, 10-phenanthroline and extended phenanthrolines. Inorg Chem 45(1):230–235. doi:10.1021/ic050880o

    Article  PubMed  CAS  Google Scholar 

  17. Margiotta N, Papadia P, Fanizzi FP, Natile G (2003) Mono- and bis-guanosine adducts of platinum complexes with carrier ligands having in-plane steric bulk; the case of 1, 10-phenanthroline and 2, 9-dimethyl-1, 10-phenanthroline. Eur J Org Chem 6:1136–1144. doi:10.1002/ejic.200390145

    Article  Google Scholar 

  18. Fisher DM, Fenton RR, Aldrich-Wright JR (2008) In vivo studies of a platinum(II) metallointercalator. Chem Commun (Camb) 43:5613–5615. doi:10.1039/b811723c

    Article  Google Scholar 

  19. Shahabadi N, Kashanian S, Purfoulad M (2009) DNA interaction studies of a platinum(II) complex, PtCl(2)(NN) (NN = 4, 7-dimethyl-1, 10-phenanthroline), using different instrumental methods. Spectrochim Acta A Mol Biomol Spectrosc 72(4):757–761. doi:10.1016/j.saa.2008.11.022

    Article  PubMed  Google Scholar 

  20. Bouyer F, Wheate NJ, Chauffert B, Aldrich-Wright J (2007) Cytotoxicity of newly synthetized Pt(II) substituted 1,10 phenanthroline complexes in cisplatin- and oxaliplatin-resistant cancer cell lines in vitro. Dalton Discussion 10 (Abstract):P52. doi: 10.1039/b714855k

  21. Caignard A, Martin M, Michel M, Martin F (1985) Interaction between two cellular subpopulations of a rat colonic carcinoma when inoculated to the syngeneic host. Int J Cancer 36(2):273–279

    Article  PubMed  CAS  Google Scholar 

  22. Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, Favier L, Ghiringhelli F, Kroemer G, Solary E, Martin F et al (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32(9):1031–1043. doi:10.1016/j.cellbi.2008.04.021

    Article  PubMed  CAS  Google Scholar 

  23. Collins JG, Rixon RM, Aldrich-Wright JR (2000) Interaction of [Pt(en)(phen)]2+ and [Pt(en)(phi)]2+ with the hexanucleotide d(GTCGAC)2: evidence for minor groove binding. Inorg Chem 39(19):4377–4379. doi:10.1021/ic991488b

    Article  PubMed  CAS  Google Scholar 

  24. Kartalou M, Essigmann JM (2001) Recognition of cisplatin adducts by cellular proteins. Mutat Res 478(1–2):1–21. doi:10.1016/S0027-5107(01)00142-7

    PubMed  CAS  Google Scholar 

  25. Kasparkova J, Vojtiskova M, Natile G, Brabec V (2008) Unique properties of DNA interstrand cross-links of antitumor oxaliplatin and the effect of chirality of the carrier ligand. Chemistry 14(4):1330–1341. doi:10.1002/chem.200701352

    Article  PubMed  CAS  Google Scholar 

  26. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320. doi:10.1038/nrd1691

    Article  PubMed  CAS  Google Scholar 

  27. Ho YP, Au-Yeung SC, To KK (2003) Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med Res Rev 23(5):633–655. doi:10.1002/med.10038

    Article  PubMed  CAS  Google Scholar 

  28. Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23. doi:10.1016/j.ctrv.2006.09.006

    Article  PubMed  CAS  Google Scholar 

  29. Dronkert ML, Kanaar R (2001) Repair of DNA interstrand cross-links. Mutat Res 486(4):217–247. doi:10.1016/S0921-8777(01)00092-1

    PubMed  CAS  Google Scholar 

  30. Olive PL, Banath JP (2009) Kinetics of H2AX phosphorylation after exposure to cisplatin. Cytom B Clin Cytom 76(2):79–90. doi:10.1002/cyto.b.20450

    Article  Google Scholar 

  31. Wagner JM, Karnitz LM (2009) Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival. Mol Pharmacol 76(1):208–214. doi:10.1124/mol.109.055178

    Article  PubMed  CAS  Google Scholar 

  32. Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, de Wit J, Jaspers NG, Beverloo HB, Hoeijmakers JH, Kanaar R (2004) The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 24(13):5776–5787, 10.1038/sj.emboj.7601344

    Article  PubMed  CAS  Google Scholar 

  33. Zhu G, Lippard SJ (2009) Photoaffinity labeling reveals nuclear proteins that uniquely recognize cisplatin-DNA interstrand cross-links. Biochemistry 48(22):4916–4925. doi:10.1021/bi900389b

    Article  PubMed  CAS  Google Scholar 

  34. Margiotta N, Natile G, Capitelli F, Fanizzi FP, Boccarelli A, De Rinaldis P, Giordano D, Coluccia M (2006) Sterically hindered complexes of platinum(II) with planar heterocyclic nitrogen donors. A novel complex with 1-methyl-cytosine has a spectrum of activity different from cisplatin and is able of overcoming acquired cisplatin resistance. J Inorg Biochem 100(11):1849–1857. doi:10.1016/j.jinorgbio.2006.07.010

    Article  PubMed  CAS  Google Scholar 

  35. Zorbas H, Keppler BK (2005) Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem 6(7):1157–1166. doi:10.1002/cbic.200400427

    Article  PubMed  CAS  Google Scholar 

  36. Moeller N, Kangarloo BS, Puscasu I, Mock C, Krebs B, Wolff JE (2000) Rational design of platinum chemotherapeutic drugs: hydrophobicity increases cytotoxicity. Anticancer Res 20(6B):4435–4439

    PubMed  CAS  Google Scholar 

  37. Kageyama Y, Yamazaki Y, Okuno H (1998) Novel approaches to prodrugs of anticancer diaminodichloroplatinum(II) complexes activated by stereoselective enzymatic ester hydrolysis. J Inorg Biochem 70(1):25–32. doi:10.1016/S0162-0134(98)00009-9

    Article  PubMed  CAS  Google Scholar 

  38. Chauffert B, Correia M, Sergent C (1999) Update on mechanisms of drug resistance. Bull Cancer 86(1):97–103

    PubMed  CAS  Google Scholar 

  39. Krause-Heuer AM, Wheate NJ, Tilby MJ, Pearson DG, Ottley CJ, Aldrich-Wright JR (2008) Substituted beta-cyclodextrin and calix[4]arene as encapsulatory vehicles for platinum(II)-based DNA intercalators. Inorg Chem 47(15):6880–6888. doi:10.1021/ic800467c

    Article  PubMed  CAS  Google Scholar 

  40. Pisani MJ, Wheate NJ, Keene FR, Aldrich-Wright JR, Collins JG (2009) Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. J Inorg Biochem 103(3):373–380. doi:10.1016/j.jiinorgbio.2008.11.014

    Article  PubMed  CAS  Google Scholar 

  41. Kemp S, Wheate NJ, Wang S, Collins JG, Ralph SF, Day AI, Higgins VJ, Aldrich-Wright JR (2007) Encapsulation of platinum(II)-based DNA intercalators within cucurbit[6, 7, 8]urils. J Biol Inorg Chem 12(7):969–979. doi:10.1007/s00775-007-0269-z

    Article  PubMed  CAS  Google Scholar 

  42. Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, Hu Y, Jiang X, Guo W, Liu B (2008) Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 70(3):726–734. doi:10.1016/j.ejpb.2008.06.016

    Article  PubMed  CAS  Google Scholar 

  43. Staffhorst RW, van der Born K, Erkelens CA, Hamelers IH, Peters GJ, Boven E, de Kroon AI (2008) Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anticancer Drugs 19(7):721–727. doi:10.1097/CAD.0b013e328304355f

    Article  PubMed  CAS  Google Scholar 

  44. Wheate NJ, Taleb RI, Krause-Heuer AM, Cook RL, Wang S, Higgins VJ, Aldrich-Wright JR (2007) Novel platinum(II)-based anticancer complexes and molecular hosts as their drug delivery vehicles. Dalton Trans 43:5055–5064. doi:10.1039/b704973k

    Article  PubMed  Google Scholar 

  45. Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–53. doi:10.1146/annurev.pharmtox.48.080907.180426

    Article  PubMed  CAS  Google Scholar 

  46. Duvillard C, Polycarpe E, Romanet P, Chauffert B (2007) Intratumoral chemotherapy: experimental data and applications to head and neck tumors. Ann Otolaryngol Chir Cervicofac 124(2):53–60. doi:10.1016/j.aorl.2006.08.004

    PubMed  CAS  Google Scholar 

  47. Markman M (2007) Intraperitoneal chemotherapy as primary treatment of advanced ovarian cancer: efficacy, toxicity, and future directions. Rev Recent Clin Trials 2(3):169–173. doi:10.2174/157488707781662698

    Article  PubMed  CAS  Google Scholar 

  48. Kemp S, Wheate NJ, Pisani MJ, Aldrich-Wright JR (2008) Degradation of bidentate-coordinated platinum(II)-based DNA intercalators by reduced L-glutathione. J Med Chem 51(9):2787–2794. doi:10.1021/jm7016072

    Article  PubMed  CAS  Google Scholar 

  49. Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48(5):398–406. doi:10.1007/s002800100363

    Article  PubMed  CAS  Google Scholar 

  50. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  Google Scholar 

  51. Brooks C, Wei Q, Cho SG, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clint Invest 119(5):1275–1285. doi:10.1172/JCI37829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nievre committees of the French National League against cancer. The authors thank Dr Laurence Duvillard and Dr François Girodon for the biological analyses, Annie Fromentin and Amandine Bataille for their technical assistance as well as Jean-Luc Beltramo for platinum measurements. This collaborative project was supported by the University of Western Sydney’s International Science Linkage and Research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Bouyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretto, J., Chauffert, B., Ghiringhelli, F. et al. Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator. Invest New Drugs 29, 1164–1176 (2011). https://doi.org/10.1007/s10637-010-9461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9461-z

Keywords

Navigation