Skip to main content

Advertisement

Log in

A natural compound, methyl angolensate, induces mitochondrial pathway of apoptosis in Daudi cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt’s lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rowley JD (2001) Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 1:245–250

    Article  PubMed  CAS  Google Scholar 

  2. Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786(2):139–152

    PubMed  CAS  Google Scholar 

  3. Devesa SS, Fears T (1992) Non-Hodgkin’s lymphoma time trends: United States and international data. Cancer Res 52(19 Suppl):5432s–5440s

    PubMed  CAS  Google Scholar 

  4. Raghavan SC, Lieber MR (2006) DNA structures at chromosomal translocation sites. Bioessays 28(5):480–494

    Article  PubMed  CAS  Google Scholar 

  5. Lieber MR, Yu K, Raghavan SC (2006) Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst) 5(9–10):1234–1245

    Article  CAS  Google Scholar 

  6. Lieber MR (1993) in The Causes and Consequences of Chromosomal Translocations. Kirsch I (ed). CRC Press, p 239–275

  7. Emmanouilides C, Jazirehi AR, Bonavida B (2002) Rituximab-mediated sensitization of B-non-Hodgkin’s lymphoma (NHL) to cytotoxicity induced by paclitaxel, gemcitabine, and vinorelbine. Cancer Biother Radiopharm 17(6):621–630

    Article  PubMed  CAS  Google Scholar 

  8. Cline JM, Hughes CL Jr (1998) Phytochemicals for the prevention of breast and endometrial cancer. Cancer Treat Res 94:107–134

    PubMed  CAS  Google Scholar 

  9. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7(5):357–369

    Article  PubMed  CAS  Google Scholar 

  10. Place AE et al (2003) The novel synthetic triterpenoid, CDDO-imidazolide, inhibits inflammatory response and tumor growth in vivo. Clin Cancer Res 9(7):2798–2806

    PubMed  CAS  Google Scholar 

  11. Chiruvella KK et al (2008) Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in leukemic cells. FEBS Lett 582(29):4066–4076

    Article  PubMed  CAS  Google Scholar 

  12. Orisadipe A et al (2001) Spasmolytic activity of methyl angolensate: a triterpenoid isolated from Entandrophragma angolense. Biol Pharm Bull 24(4):364–367

    Article  PubMed  CAS  Google Scholar 

  13. Penido C et al (2006) Inhibition of allergen-induced eosinophil recruitment by natural tetranortriterpenoids is mediated by the suppression of IL-5, CCL11/eotaxin and NFkappaB activation. Int Immunopharmacol 6(2):109–121

    Article  PubMed  CAS  Google Scholar 

  14. Abdelgaleil SA, Hashinaga F, Nakatani M (2005) Antifungal activity of limonoids from Khaya ivorensis. Pest Manag Sci 61(2):186–190

    Article  PubMed  CAS  Google Scholar 

  15. Chiruvella KK et al (2007) Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of soymida febrifuga. Int J Biomed Sci 3:269–278

    CAS  Google Scholar 

  16. Gowda NR et al (2009) Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg Med Chem Lett 19(16):4594–4600

    Article  PubMed  CAS  Google Scholar 

  17. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64(3):313–320

    Article  PubMed  CAS  Google Scholar 

  18. Kavitha CV et al (2009) Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 77(3):348–363

    Article  PubMed  CAS  Google Scholar 

  19. Shahabuddin MS et al (2009) A novel DNA intercalator, butylamino-pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells. Invest New Drugs

  20. Li ZX et al (2009) Curcumin induces apoptosis and inhibits growth of human Burkitt’s lymphoma in xenograft mouse model. Mol Cells 27(3):283–289

    Article  PubMed  CAS  Google Scholar 

  21. Frankfurt OS, Krishan A (2003) Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 14(7):555–561

    Article  PubMed  CAS  Google Scholar 

  22. Castrillo A et al (2001) Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem 276(19):15854–15860

    Article  PubMed  CAS  Google Scholar 

  23. Lee JH et al (2002) Kaurane diterpene, kamebakaurin, inhibits NF-kappa B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-kappa B target genes. J Biol Chem 277(21):18411–18420

    Article  PubMed  CAS  Google Scholar 

  24. Pulvertaft JV (1964) Cytology of Burkitt’s Tumour (African Lymphoma). Lancet 1(7327):238–240

    Article  PubMed  CAS  Google Scholar 

  25. Lin YJ et al (2009) Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells. Biochem Biophys Res Commun 378(4):683–688

    Article  PubMed  CAS  Google Scholar 

  26. Liu LF et al (2004) Action of solamargine on human lung cancer cells–enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett 577(1–2):67–74

    Article  PubMed  CAS  Google Scholar 

  27. Reyes FJ et al (2006) (2Alpha, 3beta)-2, 3-dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett 580(27):6302–6310

    Article  PubMed  CAS  Google Scholar 

  28. Roy HK et al (2001) Polyethylene glycol induces apoptosis in HT-29 cells: potential mechanism for chemoprevention of colon cancer. FEBS Lett 496(2–3):143–146

    Article  PubMed  CAS  Google Scholar 

  29. Michaelis M et al (2010) Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 79(2):130–136

    Google Scholar 

  30. Kumar A et al (2008) Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by a new series of substituted-1, 3, 4-oxadiazole derivatives. Invest New Drugs 26(5):425–435

    Article  PubMed  CAS  Google Scholar 

  31. Kim SY et al (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581(5):865–871

    Article  PubMed  CAS  Google Scholar 

  32. Dassonneville L et al (2000) Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur J Pharmacol 409(1):9–18

    Article  PubMed  CAS  Google Scholar 

  33. Koopman G et al (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415–1420

    PubMed  CAS  Google Scholar 

  34. Tan ML et al (2005) Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line. J Ethnopharmacol 96(1–2):287–294

    Article  PubMed  CAS  Google Scholar 

  35. Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 34(4):434–442

    Article  PubMed  CAS  Google Scholar 

  36. Ikai T et al (2006) Magnolol-induced apoptosis is mediated via the intrinsic pathway with release of AIF from mitochondria in U937 cells. Biol Pharm Bull 29(12):2498–2501

    Article  PubMed  CAS  Google Scholar 

  37. Ohguchi K et al (2005) Vaticanol C-induced cell death is associated with inhibition of pro-survival signaling in HL60 human leukemia cell line. Biosci Biotechnol Biochem 69(2):353–356

    Article  PubMed  CAS  Google Scholar 

  38. Nakagawa Y et al (2005) A potent apoptosis-inducing activity of a sesquiterpene lactone, arucanolide, in HL60 cells: a crucial role of apoptosis-inducing factor. J Pharmacol Sci 97(2):242–252

    Article  PubMed  CAS  Google Scholar 

  39. Deriano L et al (2005) Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Blood 105(12):4776–4783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bibha Choudhary, Dr. Rama Gopal Ghanta, Dr. Omana Joy, and Ms. Mridula Nambiar, and other members of SCR laboratory for their help and suggestions. This work was supported by Lady Tata Memorial Trust international award for leukemia research (London) for SCR. KKC is supported by DBT postdoctoral fellowship from India.

Conflict of interest

Authors disclose that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathees C. Raghavan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiruvella, K.K., Raghavan, S.C. A natural compound, methyl angolensate, induces mitochondrial pathway of apoptosis in Daudi cells. Invest New Drugs 29, 583–592 (2011). https://doi.org/10.1007/s10637-010-9393-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9393-7

Keywords

Navigation