Skip to main content

Advertisement

Log in

Hypoxia-targeting by tirapazamine (TPZ) induces preferential growth inhibition of nasopharyngeal carcinoma cells with Chk1/2 activation

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Hypoxia is commonly developed in solid tumors, which contributes to metastasis as well as radio- and chemo-resistance. Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic head and neck cancer prevalent in Southeast Asia with a high incidence rate of 15–30/100,000 persons/year (comparable to that of pancreatic cancer in the US). Previous clinical studies in NPC showed that hypoxia is detected in almost 100% of primary tumors and overexpression of hypoxia markers correlated with poor clinical outcome. Tirapazamine (TPZ) is a synthetic hypoxia-activated prodrug, which preferentially forms cytotoxic and DNA-damaging free radicals under hypoxia, thus selectively eradicate hypoxic cells. Here, we hypothesized that specific hypoxia-targeting by this clinical trial agent may be therapeutic for NPC. Our findings demonstrated that under hypoxia, TPZ was able to induce preferential growth inhibition of NPC cells, which was associated with marked cell cycle arrest at S-phase and PARP cleavage (a hallmark of apoptosis). Examination of S-phase checkpoint regulators revealed that Chk1 and Chk2 were selectively activated by TPZ in NPC cells under hypoxia. Hypoxia-selectivity of TPZ was also demonstrated by preferential downregulation of several important hypoxia-induced markers (HIF-1α, CA IX and VEGF) under hypoxia. Furthermore, we demonstrated that TPZ was equally effective and hypoxia-selective even in the presence of the EBV oncoprotein, LMP1 or the EBV genome. In summary, encouraging results from this proof-of-concept study implicate the therapeutic potential of hypoxia-targeting approaches for the treatment of NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NPC:

Nasopharyngeal carcinoma

EBV:

Epstein-Barr virus

LMP1:

Latent membrane protein 1

TPZ:

Tirapazamine

CA IX:

Carbonic anhydrase IX

HIF-1α:

Hypoxia inducible factor 1α

VEGF:

Vascular endothelial growth factor

OPN:

Osteopontin

References

  1. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  PubMed  Google Scholar 

  2. Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–26

    Article  PubMed  CAS  Google Scholar 

  3. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  PubMed  CAS  Google Scholar 

  4. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437

    Article  PubMed  CAS  Google Scholar 

  5. Cosse JP, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8:790–797

    PubMed  CAS  Google Scholar 

  6. Chan AT, Teo PM, Johnson PJ (2002) Nasopharyngeal carcinoma. Ann Oncol 13:1007–1015

    Article  PubMed  CAS  Google Scholar 

  7. Anderson KE, Mack TM, Silverman DT (2006) Cancer of the pancreas. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York, pp 721–762

    Chapter  Google Scholar 

  8. Yeh SH, Liu RS, Wu LC, Yang DJ, Yen SH, Chang CW, Yu TW, Chou KL, Chen KY (1996) Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med 23:1378–1383

    Article  PubMed  CAS  Google Scholar 

  9. Zheng YJ, Fan W, Zhao C, Yang XC, Cui NJ, Chen FJ (2006) Clinical application of 99mTc-HL91 hypoxia imaging in nasopharyngeal carcinoma. Ai Zheng 25:378–381

    PubMed  Google Scholar 

  10. Zheng YJ, Zhao C, Fan W, Liu H, Cui NJ, Chen FJ (2007) Changes of hypoxia in primary lesion of nasopharyngeal carcinoma during the treatment course and the clinical value thereof. Zhonghua Yi Xue Za Zhi 87:2698–2702

    PubMed  CAS  Google Scholar 

  11. Liu S, Xue Y, Zhang H, Liang JG, Lu XP, Liu XG, Chen SX, Jing NY (2007) Preliminary study on the value of 99Tc(m)-HL91 imaging in predicting sensitivity to radiotherapy in patients with nasopharyngeal carcinoma. Zhonghua Zhong Liu Za Zhi 29:369–372

    PubMed  Google Scholar 

  12. Hui EP, Chan AT, Pezzella F, Turley H, To KF, Poon TC, Zee B, Mo F, Teo PM, Huang DP, Gatter KC, Johnson PJ, Harris AL (2002) Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 8:2595–2604

    PubMed  CAS  Google Scholar 

  13. Hui EP, Sung FL, Yu BK, Wong CS, Ma BB, Lin X, Chan A, Wong WL, Chan AT (2008) Plasma osteopontin, hypoxia, and response to radiotherapy in nasopharyngeal cancer. Clin Cancer Res 14:7080–7087

    Article  PubMed  CAS  Google Scholar 

  14. Sung FL, Hui EP, Tao Q, Li H, Tsui NB, Dennis Lo YM, Ma BB, To KF, Harris AL, Chan AT (2007) Genome-wide expression analysis using microarray identified complex signaling pathways modulated by hypoxia in nasopharyngeal carcinoma. Cancer Lett 253:74–88

    Article  PubMed  CAS  Google Scholar 

  15. Jiang JH, Wang N, Li A, Liao WT, Pan ZG, Mai SJ, Li DJ, Zeng MS, Wen JM, Zeng YX (2006) Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. J Clin Virol 37:98–103

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Lin X, Staver M, Shoemaker A, Semizarov D, Fesik SW, Shen Y (2005) Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 65:7249–7258

    Article  PubMed  CAS  Google Scholar 

  17. Robertson N, Potter C, Harris AL (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 64:6160–6165

    Article  PubMed  CAS  Google Scholar 

  18. Melillo G (2006) Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res 4:601–605

    Article  PubMed  CAS  Google Scholar 

  19. Nagle DG, Zhou YD (2006) Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1). Curr Drug Targets 7:355–369

    Article  PubMed  CAS  Google Scholar 

  20. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  21. Shinde SS, Hay MP, Patterson AV, Denny WA, Anderson RF (2009) Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase. J Am Chem Soc 131:14220–14221

    Article  PubMed  CAS  Google Scholar 

  22. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  23. Lartigau E, Guichard M (1995) Does tirapazamine (SR-4233) have any cytotoxic or sensitizing effect on three human tumour cell lines at clinically relevant partial oxygen pressure? Int J Radiat Biol 67:211–216

    Article  PubMed  CAS  Google Scholar 

  24. Siim BG, Menke DR, Dorie MJ, Brown JM (1997) Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: relationship to tumor hypoxia. Cancer Res 57:2922–2928

    PubMed  CAS  Google Scholar 

  25. Peters KB, Brown JM (2002) Tirapazamine: a hypoxia-activated topoisomerase II poison. Cancer Res 62:5248–5253

    PubMed  CAS  Google Scholar 

  26. Peters KB, Wang H, Brown JM, Iliakis G (2001) Inhibition of DNA replication by tirapazamine. Cancer Res 61:5425–5431

    PubMed  CAS  Google Scholar 

  27. Le QT, Moon J, Redman M, Williamson SK, Lara PN Jr, Goldberg Z, Gaspar LE, Crowley JJ, Moore DF Jr, Gandara DR (2009) Phase II study of tirapazamine, cisplatin, and etoposide and concurrent thoracic radiotherapy for limited-stage small-cell lung cancer: SWOG 0222. J Clin Oncol 27:3014–3019

    Article  PubMed  CAS  Google Scholar 

  28. Rischin D, Peters L, Fisher R, Macann A, Denham J, Poulsen M, Jackson M, Kenny L, Penniment M, Corry J, Lamb D, McClure B (2005) Tirapazamine, Cisplatin, and Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 23:79–87

    Article  PubMed  CAS  Google Scholar 

  29. Aghajanian C, Brown C, O'Flaherty C, Fleischauer A, Curtin J, Roemeling R, Spriggs DR (1997) Phase I study of tirapazamine and cisplatin in patients with recurrent cervical cancer. Gynecol Oncol 67:127–130

    Article  PubMed  CAS  Google Scholar 

  30. Bedikian AY, Legha SS, Eton O, Buzaid AC, Papadopoulos N, Coates S, Simmons T, Neefe J, von Roemeling R (1997) Phase II trial of tirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma. Ann Oncol 8:363–367

    Article  PubMed  CAS  Google Scholar 

  31. von Pawel J, von Roemeling R, Gatzemeier U, Boyer M, Elisson LO, Clark P, Talbot D, Rey A, Butler TW, Hirsh V, Olver I, Bergman B, Ayoub J, Richardson G, Dunlop D, Arcenas A, Vescio R, Viallet J, Treat J (2000) Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: a report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. J Clin Oncol 18:1351–1359

    Google Scholar 

  32. Wong JH, Lui VW, Umezawa K, Ho Y, Wong EY, Ng MH, Cheng SH, Tsang CM, Tsao SW, Chan AT (2009) A small molecule inhibitor of NF-kappaB, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses growth and invasion of nasopharyngeal carcinoma (NPC) cells. Cancer Lett in press

  33. Lui VW, Wong EY, Ho Y, Hong B, Wong SC, Tao Q, Choi GC, Au TC, Ho K, Yau DM, Ma BB, Hui EP, Chan AS, Tsang CM, Tsao SW, Grandis JR, Chan AT (2009) STAT3 activation contributes directly to Epstein-Barr virus-mediated invasiveness of nasopharyngeal cancer cells in vitro. Int J Cancer 125:1884–1893

    Article  PubMed  CAS  Google Scholar 

  34. Lui VW, Boehm AL, Koppikar P, Leeman RJ, Johnson D, Ogagan M, Childs E, Freilino M, Grandis JR (2007) Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Pharmacol 71:1435–1443

    Article  PubMed  CAS  Google Scholar 

  35. Bartek J, Lukas C, Lukas J (2004) Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5:792–804

    Article  PubMed  CAS  Google Scholar 

  36. Nagasawa H, Uto Y, Kirk KL, Hori H (2006) Design of hypoxia-targeting drugs as new cancer chemotherapeutics. Biol Pharm Bull 29:2335–2342

    Article  PubMed  CAS  Google Scholar 

  37. Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I, Jang KL, Pagano JS (2006) EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res 66:9870–9877

    Article  PubMed  CAS  Google Scholar 

  38. Wakisaka N, Kondo S, Yoshizaki T, Murono S, Furukawa M, Pagano JS (2004) Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 24:5223–5234

    Article  PubMed  CAS  Google Scholar 

  39. Janssen HL, Haustermans KM, Balm AJ, Begg AC (2005) Hypoxia in head and neck cancer: how much, how important? Head Neck 27:622–638

    Article  PubMed  CAS  Google Scholar 

  40. Evans JW, Yudoh K, Delahoussaye YM, Brown JM (1998) Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes. Cancer Res 58:2098–2101

    PubMed  CAS  Google Scholar 

  41. Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6:157–162

    Article  PubMed  CAS  Google Scholar 

  42. Falck J, Petrini JH, Williams BR, Lukas J, Bartek J (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 30:290–294

    Article  PubMed  Google Scholar 

  43. Yang B, Reynolds CP (2005) Tirapazamine cytotoxicity for neuroblastoma is p53 dependent. Clin Cancer Res 11:2774–2780

    Article  PubMed  CAS  Google Scholar 

  44. Nagasawa H, Yamashita M, Mikamo N, Shimamura M, Oka S, Uto Y, Hori H (2002) Design, synthesis and biological activities of antiangiogenic hypoxic cytotoxin, triazine-N-oxide derivatives. Comp Biochem Physiol A Mol Integr Physiol 132:33–40

    Article  PubMed  Google Scholar 

  45. Wouters BG, Wang LH, Brown JM (1999) Tirapazamine: a new drug producing tumor specific enhancement of platinum-based chemotherapy in non-small-cell lung cancer. Ann Oncol 10(Suppl 5):S29–33

    Article  PubMed  Google Scholar 

  46. Sun Y, Hegamyer G, Cheng YJ, Hildesheim A, Chen JY, Chen IH, Cao Y, Yao KT, Colburn NH (1992) An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci USA 89:6516–6520

    Article  PubMed  CAS  Google Scholar 

  47. Saunders MP, Patterson AV, Chinje EC, Harris AL, Stratford IJ (2000) NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. Br J Cancer 82:651–656

    Article  PubMed  CAS  Google Scholar 

  48. Shin HJ, Kim JY, Yoo CW, Roberts SA, Lee S, Choi SJ, Lee HY, Lee DH, Kim TH, Cho KH (2008) Carbonic anhydrase 9 (CA9) expression in tumor cells enhances sensitivity to tirapazamine. J Cancer Res Clin Oncol 134:397–404

    Article  PubMed  CAS  Google Scholar 

  49. Skarsgard LD, Vinczan A, Skwarchuk MW, Chaplin DJ (1994) The effect of low pH and hypoxia on the cytotoxic effects of SR4233 and mitomycin C in vitro. Int J Radiat Oncol Biol Phys 29:363–367

    Article  PubMed  CAS  Google Scholar 

  50. Skarsgard LD, Skwarchuk MW, Vinczan A, Chaplin DJ (1993) The effect of pH on the aerobic and hypoxic cytotoxicity of SR4233 in HT-29 cells. Br J Cancer 68:681–683

    Article  PubMed  CAS  Google Scholar 

  51. Evans JW, Chernikova SB, Kachnic LA, Banath JP, Sordet O, Delahoussaye YM, Treszezamsky A, Chon BH, Feng Z, Gu Y, Wilson WR, Pommier Y, Olive PL, Powell SN, Brown JM (2008) Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res 68:257–265

    Article  PubMed  CAS  Google Scholar 

  52. Fitzsimmons SA, Lewis AD, Riley RJ, Workman P (1994) Reduction of 3-amino-1, 2, 4-benzotriazine-1, 4-di-N-oxide (tirapazamine, WIN 59075, SR 4233) to a DNA-damaging species: a direct role for NADPH:cytochrome P450 oxidoreductase. Carcinogenesis 15:1503–1510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support: Research Grant Council, Hong Kong Government (CUHK4442/06M, to ATC Chan and EP Hui). Result of this study was presented in parts at AACR annual meeting in San Diego, USA, 2008.

Conflict of Interest

Authors have no financial/commercial conflicts of interest regarding the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Tak-Cheung Chan.

Additional information

Bo Hong and Vivian WY Lui are co-first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

LMP-1 or EBV positive HONE-1 cells showed an increased expression of HIF-1α. Protein lysates of HONE-1, HONE-1-LMP1 and HONE-1-EBV cells were analysed for basal expression of HIF-1α protein, as determined by western blotting. Actin is shown as loading control. Similar results were obtained in three independent experiments. (GIF 106 kb)

High resolution image (TIFF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, B., Lui, V.W.Y., Hui, E.P. et al. Hypoxia-targeting by tirapazamine (TPZ) induces preferential growth inhibition of nasopharyngeal carcinoma cells with Chk1/2 activation. Invest New Drugs 29, 401–410 (2011). https://doi.org/10.1007/s10637-009-9356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9356-z

Keywords

Navigation