Investigational New Drugs

, Volume 29, Issue 1, pp 98–109 | Cite as

Inhibition of MDR1 activity and induction of apoptosis by analogues of nifedipine and diltiazem: an in vitro analysis

  • Maurizio Viale
  • Cinzia Cordazzo
  • Daniela de Totero
  • Roberta Budriesi
  • Camillo Rosano
  • Alberto Leoni
  • Pierfranco Ioan
  • Cinzia Aiello
  • Michela Croce
  • Aldo Andreani
  • Mirella Rambaldi
  • Patrizia Russo
  • Alberto Chiarini
  • Domenico Spinelli


We report herein the reversal of multidrug resistance-1 (MDR1) in A2780/DX3 cells by the two nifedipine-like compounds 1 and 2 that are part of a library of 1,4-dihydropyridines (1,4-DHPs) calcium-channel modulators bearing in C-4 a different substituted imidazo[2,1-b]thiazole system. By methylthiazol tetrazolium (MTT) assay, cytofluorimetry, and fluorescence microscopy we evaluated their ability to reverse MDR in our cell system. Moreover, together with compound 3 (the diltiazem-like 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one) we analyzed their ability to potentiate the triggering of apoptosis after exposure to doxorubicin, through the nuclear morphological analysis after 4′,6-diamidino-2-phenylindole (DAPI), the fluorescein isothiocyanate (FITC)-Annexin-V/propidium iodide (PI) staining and the caspase activity determination. Our results demonstrate that compounds 1 and 2, at concentrations showing a very low (5%) or absent inhibition of cell proliferation, in combination with doxorubicin enhance its antiproliferative activity (from 30% to 54% IC50 reduction) in A2780/DX3 cells through an increase of doxorubicin intracellular accumulation. These compounds together with compound 3, which has already been demonstrated to act as a potent inhibitor of MDR1 function, were also able to significantly potentiate the activation of the apoptosis machinery triggered by the exposure to doxorubicin. In conclusion, our results identify two new molecules structurally related to the calcium-channel blocker nifedipine, but characterized by a very low LTCC blockers activity, able to potentiate the antiproliferative and apoptotic activities of doxorubicin through an increase of its intracellular concentration likely caused by the inhibition of MDR1 function.


Antitumor agents Apoptosis 1,4-dihydropyridines Multidrug resistance Pgp-170 



This research was supported by funds from “Ministero dell’Istruzione, dell’Università e della Ricerca” (FIRB 2001, PRIN-2005034305_001, PRIN-20078J9L2A_005) and from the University of Bologna. Dr. M. Croce is recipient of a fellowship by “Fondazione italiana per la lotta al neuroblastoma”.


  1. 1.
    Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5:3352–3356PubMedGoogle Scholar
  2. 2.
    Kourti M, Vavatsi N, Gombakis N, Sidi V, Tzimagiorgis G, Papageorgiou T, Koliouskas D, Athanassiadou F (2007) Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol 86:166–173CrossRefPubMedGoogle Scholar
  3. 3.
    Hille S, Rein DT, Riffelmann M, Neumann R, Sartorius J, Pfützner A, Kurbacher CM, Schöndorf T, Breidenbach M (2006) Anticancer drugs induce mdr1 gene expression in recurrent ovarian cancer. Anticancer Drug 17:1041–1044CrossRefGoogle Scholar
  4. 4.
    Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127CrossRefPubMedGoogle Scholar
  5. 5.
    Sarkadi B, Homolya L, Szakács G, Váradi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236CrossRefPubMedGoogle Scholar
  6. 6.
    Li X, Li JP, Yuan HY, Gao X, Qu XJ, Xu WF, Tang W (2007) Recent advances in P-glycoprotein-mediated multidrug resistance reversal mechanisms. Meth Find Exp Clin Pharmacol 29:607–617CrossRefGoogle Scholar
  7. 7.
    Sharom FJ (2006) Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem Cell Biol 84:979–92CrossRefPubMedGoogle Scholar
  8. 8.
    Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429CrossRefPubMedGoogle Scholar
  9. 9.
    Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker RJ, Fruehauf JP (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4:389–398PubMedGoogle Scholar
  10. 10.
    Lum BL, Gosland MP, Kaubisch S, Sikic BI (1993) Molecular targets in oncology: implications of the multidrug resistance gene. Pharmacotherapy 13:88–109PubMedGoogle Scholar
  11. 11.
    Avedaño C, Menéndez JC (2002) Inhibitors of multidrug resistance to antitumor agents (MDR). Curr Med Chem 9:159–193Google Scholar
  12. 12.
    Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR, and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283CrossRefPubMedGoogle Scholar
  13. 13.
    Ferry DR, Traunecker H, Kerr DJ (1996) Clinical trials of P-glycoprotein reversal in solid tumors. Eur J Cancer 32A:1070–1081CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer V, Rodríguez-Gascón A, Heitz F, Tynes R, Hauck C, Cohen D, Vickers AE (1998) The multidrug resistance modulator Valspodar (PSC 833) is metabolized by human cytochrome P450 3A. Implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 26:802–811PubMedGoogle Scholar
  15. 15.
    Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR, Wood AJP (1999) Glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res 59:3944–3948PubMedGoogle Scholar
  16. 16.
    Vergouwen MD, Vermeulen M, de Haan RJ, Levi M, Roos YB (2007) Dihydropyridine calcium antagonists increase fibrinolytic activity: a systematic review. J Cereb Blood Flow Metab 27:1293–1308CrossRefPubMedGoogle Scholar
  17. 17.
    Sahney S (2006) A review of calcium channel antagonists in the treatment of pediatric hypertension. Paediatr Drugs 8:357–373CrossRefPubMedGoogle Scholar
  18. 18.
    Holmes FA, Lopez A, Mavligit G, Fraschini G, Frye D, Hortobagyi GN (1997) Secondary drug resistance in breast cancer: failure to reverse with oral nifedipine. Int J Cancer 73:184–186CrossRefPubMedGoogle Scholar
  19. 19.
    Philip PA, Joel S, Monkman SC, Dolega-Ossowski E, Tonkin K, Carmichael J, Idle JR, Harris AL (1992) A phase I study on the reversal of multidrug resistance (MDR) in vivo: nifedipine plus etoposide. Br J Cancer 65:267–270PubMedGoogle Scholar
  20. 20.
    Li X, Lu WL, Liang GW, Ruan GR, Hong HY, Long C, Zhang YT, Liu Y, Wang JC, Zhang X, Zhang Q (2006) Effect of stealthy liposomal topotecan plus amlodipine on the multidrug-resistant leukaemia cells in vitro and xenograft in mice. Eur J Clin Invest 36:409–418CrossRefPubMedGoogle Scholar
  21. 21.
    Li X, Ruan GR, Lu WL, Hong HY, Liang GW, Zhang YT, Liu Y, Long C, Ma X, Yuan L, Wang JC, Zhang X, Zhang Q (2006) A novel stealth liposomal topotecan with amlodipine: apoptotic effect is associated with deletion of intracellular Ca2+ by amlodipine thus leading to an enhanced antitumor activity in leukemia. J Control Release 112:186–198CrossRefPubMedGoogle Scholar
  22. 22.
    Budriesi R, Cosimelli B, Ioan P, Lanza CZ, Spinelli D, Chiarini A (2002) Cardiovascular characterization of [1, 4]thiazino[3, 4-c][1, 2, 4]oxadiazol-1-one derivatives: Selective myocardial calcium channel modulators. J Med Chem 45:3475–3481CrossRefPubMedGoogle Scholar
  23. 23.
    Budriesi R, Carosati E, Chiarini A, Cosimelli B, Cruciani G, Ioan P, Spinelli D, Spisani R (2005) A new class of selective myocardial calcium channel modulators. 2. Role of the acetal chain in oxadiazol-3-one derivatives. J Med Chem 48:2445–2456CrossRefPubMedGoogle Scholar
  24. 24.
    Viale M, Cordazzo C, Cosimelli B, de Todero D, Castagnola P, Aiello C, Severi E, Petrillo G, Cianfriglia M, Spinelli D (2009) Inhibition of MDR1 activity in vitro by a novel class of diltiazem analogues: towards new candidates. J Med Chem 52:259–66 see also SciBX, doi:10.1038/scibx.2009.44CrossRefPubMedGoogle Scholar
  25. 25.
    Budriesi R, Ioan P, Locatelli A, Cosconati S, Leoni A, Ugenti MP, Andreani A, Di Toro R, Bedini A, Spampinato S, Marinelli L, Novellino E, Chiarini A (2008) Imidazo[2, 1-b]thiazole system: A scaffold endowing dihydropyridines with selective cardiodepressant activity. J Med Chem 51:1592–1600CrossRefPubMedGoogle Scholar
  26. 26.
    Phillips AP (1949) Hantzsch’s pyridine synthesis. J Am Chem Soc 71:4003–4007CrossRefGoogle Scholar
  27. 27.
    Andreani A, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Garaliene V, Welsh W, Arora S, Farruggia G, Masotti L (2005) Antitumor activity of new substituted 3-(5-imidazo[2, 1-b]thiazolylmethylene)-2-indolinones and study of their effect on the cell cycle. J Med Chem 48:5604–5607CrossRefPubMedGoogle Scholar
  28. 28.
    Hussain RF, Nouri AME, Oliver RTD (1993) A new approach for measurement of cytotoxicity using colorimetric assay. J Immunol Methods 60:89–96CrossRefGoogle Scholar
  29. 29.
    Novi M, Ottone M, Dell’Erba C, Barbieri F, Chiavarina B, Maccagno M, Viale M (2004) 1, 4-Bis(1-naphthyl)-2, 3-dinitro-1, 3-butadiene a novel anticancer compound effective against tumor cell lines characterized by different mechanisms of resistance. Oncol Rep 12:91–96PubMedGoogle Scholar
  30. 30.
    Qi J, Yang CZ, Wang CY, Wang SB, Yang M, Wang JH (2002) Function and mechanism of pyronaridine: a new inhibitor of P-glycoprotein-mediated multidrug resistance. Acta Pharmacol Sin 23:544–550PubMedGoogle Scholar
  31. 31.
    Beck WT, Qian XD (1992) Photoaffinity substrates for P-glycoprotein. Biochem Pharmacol 43:89–93CrossRefPubMedGoogle Scholar
  32. 32.
    Gonzales VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663Google Scholar
  33. 33.
    Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026CrossRefPubMedGoogle Scholar
  34. 34.
    Fuster JJ, Sanz-González SM, Moll UM, Andrés V (2007) Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13:192–199CrossRefPubMedGoogle Scholar
  35. 35.
    Gadducci A, Cosio S, Muraca S, Genazzani AR (2002) Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol 23:390–396PubMedGoogle Scholar
  36. 36.
    Lerma-Díaz JM, Hernández-Flores G, Domínguez-Rodríguez JR, Ortíz-Lazareno PC, Gómez-Contreras P, Cervantes-Munguía R, Scott-Algara D, Aguilar-Lemarroy A, Jave-Suárez LF, Bravo-Cuellar A (2006) In vivo and in vitro sensitization of leukemic cells to adriamycin-induced apoptosis by pentoxifylline. Involvement of caspase cascades and IkappaBalpha phosphorylation. Immunol Lett 103:149–158CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshimoto Y, Kawada M, Ikeda D, Ishizuka M (2005) Involvement of doxorubicin-induced Fas expression in the antitumor effect of doxorubicin on Lewis lung carcinoma in vivo. Int Immunopharmacol 5:281–288CrossRefPubMedGoogle Scholar
  38. 38.
    Wu S, Ko YS, Teng MS, Ko YL, Hsu LA, Hsueh C, Chou Y, Liew CC, Lee YS (2002) Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell Cardiol 34:1595–1607CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maurizio Viale
    • 1
  • Cinzia Cordazzo
    • 2
  • Daniela de Totero
    • 1
  • Roberta Budriesi
    • 3
  • Camillo Rosano
    • 4
  • Alberto Leoni
    • 3
  • Pierfranco Ioan
    • 3
  • Cinzia Aiello
    • 1
  • Michela Croce
    • 1
  • Aldo Andreani
    • 3
  • Mirella Rambaldi
    • 3
  • Patrizia Russo
    • 5
  • Alberto Chiarini
    • 3
  • Domenico Spinelli
    • 6
  1. 1.Istituto Nazionale per la Ricerca sul CancroS.C. Terapia ImmunologicaGenovaItaly
  2. 2.Dipartimento di Chimica Organica “A. Mangini”Università degli Studi di BolognaBolognaItaly
  3. 3.Dipartimento di Scienze FarmaceuticheUniversità degli Studi di BolognaBolognaItaly
  4. 4.Istituto Nazionale per la Ricerca sul CancroS.C. NanobiotecnologieGenovaItaly
  5. 5.Istituto Nazionale per la Ricerca sul CancroS.S. Tumori PolmonariGenovaItaly
  6. 6.Dipartimento di Chimica “G. Ciamician”Università degli Studi di BolognaBolognaItaly

Personalised recommendations