Skip to main content

Advertisement

Log in

Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC50 values of 1.54 and 1.10 µM, respectively, in MDA-MB-231 cells and EC50 values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC50 values of 7.6 and 2.4 µM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G2/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parkin D, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Putti T, El-Rehim D, Rakha E, Paish C, Lee A, Pinder S, Ellis I (2005) Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol 18:26–35

    Article  CAS  PubMed  Google Scholar 

  3. Azuine M, Bhide S (1992) Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in swiss mice. Nutr Cancer 17:77–83

    Article  CAS  PubMed  Google Scholar 

  4. Huang M, Lou Y, Ma W, Newmark H, Reuhl K, Conney A (1994) Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res 54:5841–5847

    CAS  PubMed  Google Scholar 

  5. Ikezaki S, Nishikawa A, Furukawa F, Kudo K, Nakamura H, Tamura K, Mori H (2001) Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by n-methyl-n′-nitro-n-nitrosoguanidine and sodium chloride in rats. Anticancer Res 21:3407–3411

    CAS  PubMed  Google Scholar 

  6. Rao C, Simi B, Reddy B (1993) Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis 11:2219–2225

    Article  Google Scholar 

  7. Rao C, Rivenson A, Simi B, Reddy B (1995) Chemoprevention of colon cancer by dietary curcumin. Ann NY Acad Sci USA 768:201–204

    Article  CAS  Google Scholar 

  8. Sharma RA, Iresone CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, Manson MM, Marnett LJ, Steward WP, Gescher A (2001) Effects of dietary curcumin on glutathione s-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res 7:1452–1458

    CAS  PubMed  Google Scholar 

  9. Inano H, Onoda M (2002) Prevention of radiation-induced mammary tumors. Int J Radiat Oncol Biol Phys 52:212–223

    Article  PubMed  Google Scholar 

  10. Inano H, Onoda M, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K (1999) Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20:1011–1018

    Article  CAS  PubMed  Google Scholar 

  11. Pereira MA, Grubbs CJ, Barnes LH, Li H, Olson GR, Eto I, Juliana M, Whitaker LM, Kelloff GJ, Steele VE, Lubet RA (1996) Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7, 12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17:1305–1311

    Article  CAS  PubMed  Google Scholar 

  12. Singletary K, MacDonald C, Wallig M, Fisher C (1996) Inhibition of 7, 12-dimethylbenz[a]anthracene (dmba)-induced mammary tumorigenesis and dmba-DNA adduct formation by curcumin. Cancer Lett 103:137–141

    Article  CAS  PubMed  Google Scholar 

  13. Chuang S, Cheng A, Lin J, Kuo M (2000) Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food ChemToxicol 38:991–995

    CAS  Google Scholar 

  14. Squires MS, Hudson EA, Howells L, Sale S, Houghton CE, Jones JL, Fox LH, Dickens M, Prigent SA, Manson MM (2003) Relevance of mitogen activated protein kinase (mapk) and phosphotidylinositol-3-kinase/protein kinase b (pi3k/pkb) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65:361–376

    Article  CAS  PubMed  Google Scholar 

  15. Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, Nguyen M (2002) Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98:234–240

    Article  CAS  PubMed  Google Scholar 

  16. Mehta K, Pantazis P, Mcqueen T, Aggarwal B (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8:470–481

    Article  CAS  PubMed  Google Scholar 

  17. Verma SP, Salamone E, Goldin B (1997) Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer mcf-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun 233:692–696

    Article  CAS  PubMed  Google Scholar 

  18. Ramachandran C, You W (1999) Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res Treat 54:269–278

    Article  CAS  PubMed  Google Scholar 

  19. Hanif R, Qiao L, Shiff S, Rigas B (1997) Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130:576–584

    Article  CAS  PubMed  Google Scholar 

  20. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20:7597–7609

    Article  CAS  PubMed  Google Scholar 

  21. Jee S, Shen S, Tseng C, Chiu H, Kuo M (1998) Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells. J Invest Dermatol 111:656–661

    Article  CAS  PubMed  Google Scholar 

  22. Somers-Edgar TJ, Scandlyn MJ, Stuart EC, Le Nedelec MJ, Valentine SP, Rosengren RJ (2008) The combination of epigallocatechin gallate and curcumin suppresses era- breast cancer cell growth in vitro and in vivo. Inter J Cancer 122:1966–1971

    Article  CAS  Google Scholar 

  23. Cheng AL, Hsu CH, Lin J-K, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase i clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  24. Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, Zhao Y, Li X, Yang S (2009) Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem 17:2623–2631

    Article  CAS  PubMed  Google Scholar 

  25. Markaverich B, Schauweker T, Gregory R, Varma M, Kittrell F, Medina D, Varma R (1992) Nuclear type ii sites and malignant cell proliferation: inhibition by 2, 6-bis-benzylidenecyclohexanones. Cancer Res 52:2482–2488

    CAS  PubMed  Google Scholar 

  26. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hooingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12:3871–3883

    Article  CAS  PubMed  Google Scholar 

  27. Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, Snyder JP, Liotta DC, Jones JL, Shoji M (2005) Ef24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16:263–275

    Article  CAS  PubMed  Google Scholar 

  28. Das B, Thirupathi P, Mahender I, Reddy KR (2006) Convenient and facile cross-aldol condensation catalyzed by molecular iodine. An efficient synthesis of α, α ′-bis(substituted-benzylidene) cycloalkanones. J Mol Cat 247:182–185

    Article  CAS  Google Scholar 

  29. Costi R, Di Santo R, Artico M, Massa S, Ragno R, Loddo R, La Colla M, Tramontano E, La Colla P, Pani A (2004) 2, 6-bis(3, 4, 5-trihydroxybenzylydene) derivatives of cyclohexanone: novel potent hiv-1 integrase inhibitors that prevent hiv-1 multiplication in cell-based assays. Bioorg Med Chem 12:199–215

    Article  CAS  PubMed  Google Scholar 

  30. Bhagat S, Sharma R, Chakraborti AK (2006) Dual-activation protocol for tandem cross-aldol condensation: an easy and highly efficient synthesis of α, α ′-bis(aryl/alkylmethylidene)ketones. J Mol Cat 260:235–240

    Article  CAS  Google Scholar 

  31. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Mokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anti-cancer drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  32. Stuart EC, Rosengren RJ (2008) The combination of raloxifene and epigallocatechin gallate suppresses growth and induces apoptosis in mda-mb-231 cells. Life Sciences 82:943–948

    Article  CAS  PubMed  Google Scholar 

  33. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  34. Wosikowski K, Schuurhuis D, Kops G, Saceda M, Bates S (1997) Altered gene expression in drug-resistant human breast cancer cells. Clin Cancer Res 3:2405–2414

    CAS  PubMed  Google Scholar 

  35. Robinson T, Ehlers T, Hubbard I, Bai X, Arbiser J, Goldsmith D, Bowen J (2003) Design, synthesis, and biological evaluation of angiogenesis inhibitors: aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 13:115–117

    Article  CAS  PubMed  Google Scholar 

  36. Grandis J, Sok J (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46

    Article  CAS  PubMed  Google Scholar 

  37. DeFazio A, Chiew Y, McEvoy M, Watts C, Sutherland R (1997) Antisense estrogen receptor rna expression increases epidermal growth factor receptor gene expression in breast cancer cells. Cell Growth Differ 8:903–911

    CAS  PubMed  Google Scholar 

  38. Roos W, Fabbro D, Kung W, Costa SD, Eppenberger U (1986) Correlation between hormone dependency and the regulation of epidermal growth factor receptor by tumour promoters in human mammary carcinoma cells. Proc Natl Acad Sci USA 83:991–995

    Article  CAS  PubMed  Google Scholar 

  39. Slamon D, Clark G, Wong S, Levin W, Ullrich A, Mcguire W (1987) Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  40. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Perdee AB, Iglehart JD (2004) Nf-kb activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101:10137–10142

    Article  CAS  PubMed  Google Scholar 

  41. Korutla L, Cheung J, Mendelsohn J, Kumar R (1995) Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis 16:1741–1745

    Article  CAS  PubMed  Google Scholar 

  42. Korutla L, Kumar R (1994) Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in a431 cells. Biochim Biophys Acta 1224:597–600

    Article  PubMed  Google Scholar 

  43. Hong R, Spohn W, Hung M (1999) Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin Cancer Res 5:1884–1891

    CAS  PubMed  Google Scholar 

  44. Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE (2001) Therapeutic potential of curcumin in human prostate cancer. Iii. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of lncap prostate cancer cells in vivo. Prostate 47:293–303

    Article  CAS  PubMed  Google Scholar 

  45. Patel B, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi A, Majumdar A (2008) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating egfr and igf-1r. Int J Cancer 122:267–273

    Article  CAS  PubMed  Google Scholar 

  46. Chen A, Xu J, Johnson A (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor egr-1. Oncogene 25:278–287

    PubMed  Google Scholar 

  47. Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH (2005) Herceptin-induced inhibition of erbb2 signaling involves reduced phosphorylation of akt but not endocytic down-regulation of erbb2. Int J Cancer 116:359–367

    Article  CAS  PubMed  Google Scholar 

  48. Dillon RL, White DE, Muller WJ (2007) The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26:1338–1345

    Article  CAS  PubMed  Google Scholar 

  49. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase akt pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  50. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ask1, a mammalian mapkkk that activates sapk/jnk and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  51. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (1998) Ask1 is essential for jnk/sapk activation by traf2. Mol Cell 2:389–395

    Article  CAS  PubMed  Google Scholar 

  52. Ho KK, Rosivatz E, Gunn RM, Smith ME, Stavropoulou AV, Rosivatz E, Numbere MG, Wong JB, Lafitte VG, Behrendt JM, Myatt SS, Hailes HC, Woscholski R, Lam EW (2009) The novel molecule 2-[5-(2-chloroethyl)-2-acetoxy-benzyl]-4-(2-chloroethyl)-phenyl acetate inhibits phosphoinositide 3-kinase/akt/mammalian target of rapamycin signalling through jnk activation in cancer cells. Febs J

  53. Yamamoto Y, Hoshino Y, Ito T, Nariai T, Mohri T, Obana M, Hayata N, Uozumi Y, Maeda M, Fujio Y, Azuma J (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-map kinase in cardiac myocytes. Cardiovasc Res 79:89–96

    Article  CAS  PubMed  Google Scholar 

  54. Barkett M, Gilmore TD (1999) Control of apoptosis by rel/nf-kappab transcription factors. Oncogene 18:6910–6924

    Article  CAS  PubMed  Google Scholar 

  55. Lauder A, Castellanos A, Weston K (2001) C-myb transcription is activated by protein kinase b (pkb) following interleukin 2 stimulation of t cells and is required for pkb-mediated protection from apoptosis. Mol Cell Biol 21:5797–5805

    Article  CAS  PubMed  Google Scholar 

  56. Burow ME, Weldon CB, Melnik LI, Duong BN, Collins-Burow BM, Beckman BS, McLachlan JA (2000) Pi3-k/akt regulation of nf-kappab signaling events in suppression of tnf-induced apoptosis. Biochem Biophys Res Commun 271:342–345

    Article  CAS  PubMed  Google Scholar 

  57. Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH (2003) Inactivation of nf-kappab by genistein is mediated via akt signaling pathway in breast cancer cells. Oncogene 22:4702–4709

    Article  CAS  PubMed  Google Scholar 

  58. Anand P, Thomas S, Kunnumakkara A, Sundarama C, Harikumar K, Sung B, Tharakan S, Misra K, Priyadarsini I, Rajasekharan K, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Breast Cancer Research Trust (RJR) and a University of Otago Postgraduate Scholarship (TJS-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhonda J. Rosengren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somers-Edgar, T.J., Taurin, S., Larsen, L. et al. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines. Invest New Drugs 29, 87–97 (2011). https://doi.org/10.1007/s10637-009-9339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9339-0

Keywords

Navigation