Skip to main content

Advertisement

Log in

Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

In our previous study, a series of novel cyclic cyanoguanidine compounds, eg. 5-substituted 2-cyanoimino-4-imidazodinone and 2-cyanoimino-4- pyrimidinone derivatives have been successfully synthesized and showed remarkable cytotoxicity in several cancer cell lines. In this present study, it is our aim to screen more potential candidates among the cyclic pyridyl cyanoguanidine compounds (BPR-DC-1, 2, 3) by in vitro and in vivo studies for the therapy of lung cancer, alternatively. Our results showed that BPR-DC-2 significantly inhibited proliferation of tumor cells with an IC50 of 3.60 ± 1.27 and 14.81 ± 4.23 μM in human lung carcinoma cells, H69 and A549, respectively by the MTT assay at 48 hr; BPR-DC-2 also obviously suppressed the tumor proliferation and MDR-1 gene expression, even induced cell apoptosis in the ex vivo histocultured lung tumor. We further demonstrated that, in the nude mouse model of metastatic lung cancer, BPR-DC-2 could diminish the tumor mass, retard the progression of metastasis, and prolong the survival time. In addition, it was found that BPR-DC-2 exerted its anti-tumor effects through the inhibition of MDR-1 gene expression and down-regulation of tumor anti-apoptosis signals (activated p-AKT and over-expression of PARP-1) by western blotting analysis. In conclusion, in this present study we have demonstrated that BPR-DC-2, derived from a series of novel synthetic cyclic cyanoguanidine compounds, has proved its potential as an anti-tumor drug candidate in treating lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  1. Liu CC, Tsai SS, Chiu HF, Wu TN, Yang CY (2008) Ambient exposure to criteria air pollutants and female lung cancer in Taiwan. Inhal. Toxicol. 20:311–317

    Article  CAS  PubMed  Google Scholar 

  2. Cheng YW, Chiou HL, Sheu GT, Hsieh LL, Chen JT, Chen CY, Su JM, Lee H (2001) The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res 61:2799–2803

    CAS  PubMed  Google Scholar 

  3. Chen CJ, Wu HY, Chuang YC, Chang AS, Luh KT, Chao HH, Chen KY, Chen SG, Lai GM, Huang HH, Lee HH (1990) Epidemiologic characteristics and multiple risk factors of lung cancer in Taiwan. Anticancer Res 10:971–976

    CAS  PubMed  Google Scholar 

  4. Ramalingama S, Belanib C (2008) Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. The Oncologist 13(suppl 1):5–13

    Article  Google Scholar 

  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  6. Dillman RO, Herndon J, Seagren SL, Eaton WL Jr, Green MR (1996) Improved Survival in Stage III Non-Small-Cell Lung Cancer: Seven-Year Follow-up of Cancer and Leukemia Group B (CALGB) 8433 Trial. J Natl Cancer Inst 88:1210–1215

    Article  CAS  PubMed  Google Scholar 

  7. Younes MN, Park YW, Yazici YD, Gu M, Santillan AA, Nong X, Kim S, Jasser SA, El-Naggar AK, Myers JN (2006) Concomitant inhibition of epidermal growth factor and vascular endothelial growth factor receptor tyrosine kinases reduces growth and metastasis of human salivary adenoid cystic carcinoma in an orthotopic nude mouse model. Mol Cancer Ther 5:2696–2705

    Article  CAS  PubMed  Google Scholar 

  8. de Haan LD, De Mulder PH, Vermorken JB, Schornagel JH, Vermey A, Verweij J (1992) Cisplatin-based chemotherapy in advanced adenoid cystic carcinoma of the head and neck. Head Neck 14:273–277

    Article  PubMed  Google Scholar 

  9. Olsen LS, Hjarnaa PJ, Latini S, Holm PK, Larsson R, Bramm E, Binderup L, Madsen MW (2004) Anticancer agent CHS 828 suppresses nuclear factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 111:198–205

    Article  CAS  PubMed  Google Scholar 

  10. Mader MM (2005) Novel antiproliferative antitumor agents. Curr Opin Drug Discov Devel 8:613–618

    CAS  PubMed  Google Scholar 

  11. Hassan SB, Jonsson E, Larsson R, Karlsson MO (2001) Model for time dependency of cytotoxic effect of CHS 828 in vitro suggests two different mechanisms of action. J Pharmacol Exp Ther 299:1140–1147

    CAS  PubMed  Google Scholar 

  12. Aleskog A, Bashir-Hassan S, Hovstadius P, Kristensen J, Höglund M, Tholander B, Binderup L, Larsson R, Jonsson E (2001) Activity of CHS 828 in primary cultures of human hematological and solid tumors in vitro. Anticancer Drugs 12:821–827

    Article  CAS  PubMed  Google Scholar 

  13. Singh B, Li R, Xu L, Poluri A, Patel S, Shaha AR, Pfister D, Sherman E, Goberdhan A, Hoffman RM, Shah J (2002) Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck 24:437–442

    Article  PubMed  Google Scholar 

  14. Tanino H, Oura S, Hoffman RM, Kubota T, Furukawa T, Arimoto J, Yoshimasu T, Hirai I, Bessho T, Suzuma T, Sakurai T, Naito Y (2001) Acquisition of multidrug resistance in recurrent breast cancer demonstrated by the histoculture drug response assay. Anticancer Res 21:4083–4086

    CAS  PubMed  Google Scholar 

  15. Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157

    CAS  PubMed  Google Scholar 

  16. Cavalcanti GB Jr, da Cunha Vasconcelos F, Pinto de Faria G, Scheiner MA, de Almeida Dobbin J, Klumb CE, Maia RC (2004) Coexpression of p53 protein and MDR functional phenotype in leukemias: the predominant association in chronic myeloid leukemia. Cytometry B Clin Cytom 61:1–8

    Article  PubMed  Google Scholar 

  17. Lee CH, Wu CL, Shiau AL (2007) Hypoxia-induced cytosine deaminase gene expression for cancer therapy. Hum Gene Ther 18:27–38

    Article  CAS  PubMed  Google Scholar 

  18. Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK, Lee KS (1999) The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells. Korean J Intern Med 14:42–52

    CAS  PubMed  Google Scholar 

  19. Miao ZH, Tong LJ, Zhang JS, Han JX, Ding J (2004) Characterization of salvicine-resistant lung adenocarcinoma A549/SAL cell line. Int J Cancer 110:627–632

    Article  CAS  PubMed  Google Scholar 

  20. Chuu JJ, Liu JM, Tsou MH, Huang CL, Chen CP, Wang HS, Chen CT (2007) Effects of paclitaxel and doxorubicin in histocultures of hepatocelular carcinomas. J Biomed Sci 14:233–244

    Article  CAS  PubMed  Google Scholar 

  21. Chen CT, Gan Y, Au JL, and Wientjes MG (1998) Androgen-dependent and — independent human prostate xenograft tumors as models for drug activity evaluation. Cancer Res 58:2777–2783

    PubMed  Google Scholar 

  22. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  23. Al-Ejeh F, Darby JM, Brown MP (2009) Chemotherapy synergizes with radioimmunotherapy targeting la autoantigen in Tumors. PLoS ONE 4(2):e4630. doi:10.1371/journal.pone.0004630

    Article  PubMed  Google Scholar 

  24. Sun SY, Zhou Z, Wang R, Fu H, Khuri FR (2004) The farnesyltransferase inhibitor Lonafarnib induces growth arrest or apoptosis of human lung cancer cells without downregulation of Akt. Cancer Biol Ther 3:1092–8

    Article  CAS  PubMed  Google Scholar 

  25. David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, Brody AR (2004) Phospho-Akt Overexpression in Non—Small Cell Lung Cancer Confers Significant Stage-Independent Survival Disadvantage. Clin. Cancer Res. 10:6865–6871

    Article  CAS  PubMed  Google Scholar 

  26. Leprêtre C, Scovassi AI, Shah GM, Torriglia A (2009) Regulation of poly(ADP-ribose) polymerase-1 functions by leukocyte elastase inhibitor/LEI-derived DNase II during caspase-independent apoptosis. Int J Biochem Cell Biol. 41:1046–1054

    Article  PubMed  Google Scholar 

  27. Kobayashi K, Nakanishi H, Masuda A, Tezuka N, Mutai M, Tatematsu M (1997) Sequential observation of micrometastasis formation by bacterial lacZ gene- tagged Lewis lung carcinoma cells. Cancer Lett 112:191–198

    Article  CAS  PubMed  Google Scholar 

  28. Olsen LS, Hjarnaa PJ, Latini S, Holm PK, Larsson R, Bramm E, Binderup L, Madsen MW (2004) Anticancer agent CHS 828 suppresses nuclear factor-kappa B activity in cancer cells through downregulation of IKK activity. Int J Cancer 111:198–205

    Article  CAS  PubMed  Google Scholar 

  29. Hassan SB, Lövborg H, Lindhagen E, Karlsson MO, Larsson R (2006) CHS 828 kill tumour cells by inhibiting the nuclear factor-kappaB translocation but unlikely through down-regulation of proteasome. Anticancer Res 26:4431–4436

    CAS  PubMed  Google Scholar 

  30. Hjarnaa PJ, Jonsson E, Latini S, Dhar S, Larsson R, Bramm E, Skov T, Binderup L (1999) CHS 828, a novel pyridyl cyanoguanidine with potent antitumor activity in vitro and in vivo. Cancer Res 59:5751–5757

    CAS  PubMed  Google Scholar 

  31. Ravaud A, Cerny T, Terret C, Wanders J, Bui BN, Hess D, Droz JP, Fumoleau P, Twelves C (2005) Phase I study and pharmacokinetic of CHS-828, a guanidino— containing compound, administered orally as a single dose every 3 weeks in solid tumours: An ECSG/EORTC study. Eur J Cancer 41:702–707

    Article  CAS  PubMed  Google Scholar 

  32. Hovstadius P, Lindhagen E, Hassan S, Nilsson K, Jernberg-Wiklund H, Nygren P, Binderup L, Larsson R (2004) Cytotoxic effect in vivo and in vitro of CHS 828 on human myeloma cell lines. Anticancer Drugs 15:63–70

    Article  CAS  PubMed  Google Scholar 

  33. Chern JH, Shia KH, Chang CM, Lee CC, Lee YC, Tai CL, Lin YT, Chang CH, Tseng HY (2004) Synthesis and in vitro cytotoxicity of 5-substituted 2- cyanoimino -4- imidazodinone and 2- cyanoimino-4-pyrimidinone derivatives. Bioorg Med Chem Lett 14:1169–172

    Article  CAS  PubMed  Google Scholar 

  34. Chuu JJ, Liu JM, Tsou MH, Huang CL, Chen CP, Wang HS, Chen CT (2007) Effects of paclitaxel and doxorubicin in histocultures of hepatocelular carcinomas. J Biomed Sci 14:233–244

    Article  CAS  PubMed  Google Scholar 

  35. Chang SG, Jung JC, Rho YS, Huh JS, Kim JI, Hoffman RM (1996) Efficacy of the platinum analog [Pt(cis-dach)(DPPE)-2NO3] on histocultured human patient bladder tumors and cancer cell lines. Anticancer Res 16:3423–3428

    CAS  PubMed  Google Scholar 

  36. Jang SH, Wientjes MG, Au JL (2001) Determinants of paclitaxel uptake, accumulation and retention in solid tumors. Investi New Drugs 19:113–123

    Article  Google Scholar 

  37. Kuh HJ, Jang SH, Wientjes MG, Weaver JR, Au JL (1999) Determinants of paclitaxel penetration and accumulation in human solid tumor. J. Pharmacol. Exp. Ther. 290:871–880

    CAS  PubMed  Google Scholar 

  38. Au JL, Li D, Gan Y, Gao X, Johnson AL, Johnston J, Millenbaugh NJ, Jang SH, Kuh HJ, Chen CT, Wientjes MG (1998) Pharmacodynamics of immediate and delayed effects of paclitaxel: role of slow apoptosis and intracellular drug retention. Cancer Res 58:2141–2148

    PubMed  Google Scholar 

  39. Zheng JH, Chen CT, Au JL, Wientjes MG (2001) Time-and concentration- dependent penetration of doxorubicin in prostate tumors. Aaps Pharmsci 3:E15

    Article  PubMed  Google Scholar 

  40. Blumenthal RD, Osorio L, Hayes MK, Horak ID, Hansen HJ, Goldenberg DM (2005) Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft. Cancer Immunol Immunother 54:315–327

    Article  CAS  PubMed  Google Scholar 

  41. Thompson JA, Eades-Perner AM, Ditter M, Muller WJ, Zimmermann W (1997) Expression of transgenic carcinoembryonic antigen (CEA) in tumor- rone mice: an animal model for CEA-directed tumor immunotherapy. Int J Cancer 72:197–202

    Article  CAS  PubMed  Google Scholar 

  42. Furukawa T, Kubota T, Murata H, Tanino H, Yuasa S, Morita K, Ueno J, Kozakai K, Yano T (1998) Antitumor spectra of anthracyclines against gastric cancer tissues obtained from surgical specimens with reference to P-glycoprotein expression. J Surg Oncol 69:173–177

    Article  CAS  PubMed  Google Scholar 

  43. Gupta AK, Soto DE, Feldman MD, Goldsmith JD, Mick R, Hahn SM, Machtay M, Muschel RJ, McKenna WG (2004) Signaling pathways in NSCLC as a predictor of outcome and response to therapy. Lung 182:151–162

    Article  PubMed  Google Scholar 

  44. Shah A, Swain WA, Richardson D, Edwards J, Stewart DJ, Richardson CM, Swinson DE, Patel D, Jones JL, O'Byrne KJ (2005) Phospho-akt expression is associated with a favorable outcome in non-small cell lung cancer. Clin Cancer Res 11:2930–2936

    Article  CAS  PubMed  Google Scholar 

  45. Tang JM, He QY, Guo RX, Chang XJ (2006) Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer 51:181–191

    Article  PubMed  Google Scholar 

  46. Cicenas J (2008) The potential role of Akt phosphorylation in human cancers. Int J Biol Markers 23:1–9

    CAS  PubMed  Google Scholar 

  47. Shtilbans V, Wu M, Burstein DE (2008) Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 12:153–160

    Article  PubMed  Google Scholar 

  48. Miao LJ, Wang J, Li SS, Wu YM, Wu YJ, Wang XC (2006) Correlation of P27 expression and localization to phosphorylated AKT in non-small cell lung cancer. Ai Zheng 25:1216–1220

    CAS  PubMed  Google Scholar 

  49. Lövborg H, Martinsson P, Gullbo J, Ekelund S, Nygren P, Larsson R (2002) Modulation of pyridyl cyanoguanidine (CHS 828) induced cytotoxicity by 3- minobenzamide in U-937 GTB cells. Biochem Pharmacol 63:1491–1498

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The investigation was partially supported by a research grant (CCMP96-RD-015) Committee on Chinese pharmacy, department of health, executive Yuan, Taipei, Taiwan. Meanwhile, and by the National Science council, the Republic of China, under grant (NSC 94-2320-B-218 -001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia-Yu Chang or Jiunn-Jye Chuu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SL., Huang, CH., Lin, CC. et al. Antitumor effect of BPR-DC-2, a novel synthetic cyclic cyanoguanidine derivative, involving the inhibition of MDR-1 expression and down-regulation of p-AKT and PARP-1 in lung cancer. Invest New Drugs 29, 195–206 (2011). https://doi.org/10.1007/s10637-009-9337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9337-2

Keywords

Navigation