Skip to main content

Advertisement

Log in

The effect of cellular environment and p53 status on the mode of action of the platinum derivative LA-12

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

In this study, we characterized the effects of LA-12 on tumor cell lines possessing wild type p53 and on p53-deficient/mutant cell lines and the results were compared to those obtained using cisplatin. We have determined changes of p53 levels, of its transcriptional activity, of its posttranscriptional modifications and the effect of the treatment on the cell cycle, on the induction of apoptosis and on gene expression. LA-12 induces weak accumulation of both transcriptionally active p53 tumor suppressor and of p21WAF1/CIP1 protein. LA-12 and cisplatin also significantly differ in their effects on apoptosis and cell cycle and on gene expression spectra in studied cell lines. LA-12 induces higher apoptosis levels in comparison with those induced by cisplatin, especially in p53-deficient H1299 cells and in MCF-7DD cells with transcriptionally inactive p53. We suggest that LA-12-mediated apoptosis is not fully dependent on p53. This confirms the therapeutic potential of LA-12 as a more potent cytostatic agent for both tumor cells expressing wild type p53 and for p53-deficient or mutant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams M, A'Hern RP, Calvert AH, Carmichael J, Clark PI, Coleman RE, Earl HM, Gallagher CJ, Ganesan TS, Gore ME, Graham JD, Harper PG, Jayson GC, Kaye SB, Ledermann JA, Osborne RJ, Perren TJ, Poole CJ, Radford JA, Rustin GJ, Slevin ML, Smyth JF, Thomas H, Wilkinson PM (1998) Chemotherapy for ovarian cancer–a consensus statement on standard practice. Br J Cancer 78:1404–1406

    CAS  PubMed  Google Scholar 

  2. Zlatanova J, Yaneva J, Leuba SH (1998) Proteins that specifically recognize cisplatin-damaged DNA: a clue to anticancer activity of cisplatin. FASEB J 12:791–799

    CAS  PubMed  Google Scholar 

  3. Boudny V, Vrana O, Gaucheron F, Kleinwachter V, Leng M, Brabec V (1992) Biophysical analysis of DNA modified by 1, 2-diaminocyclohexane platinum(II) complexes. Nucleic Acids Res 20:267–272. doi:10.1093/nar/20.2.267

    Article  CAS  PubMed  Google Scholar 

  4. Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. In: Lippert B (ed) Cisplatin, chemistry, and biochemistry of a leading anticancer drug, 1st edn. Helvetica Chimica Acta, Zürich, pp 111–135

    Google Scholar 

  5. Zak F, Turanek J, Kroutil A, Sova P, Mistr A, Poulova A, Mikolin P, Zak Z, Kasna A, Zaluska D, Neca J, Sindlerova L, Kozubik A (2004) Platinum(IV) complex with adamantylamine as nonleaving amine group: synthesis, characterization, and in vitro antitumor activity against a panel of cisplatin-resistant cancer cell lines. J Med Chem 47:761–763. doi:10.1021/jm030858+

    Article  CAS  PubMed  Google Scholar 

  6. Sova P, Chladek J, Zak F, Mistr A, Kroutil A, Semerad M, Slovak Z (2005) Pharmacokinetics and tissue distribution of platinum in rats following single and multiple oral doses of LA-12. Int J Pharm 288:123–129 (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV). doi:10.1016/j.ijpharm.2004.09.020

    Article  CAS  PubMed  Google Scholar 

  7. Kozubik A, Horvath V, Svihalkova-Sindlerova L, Soucek K, Hofmanova J, Sova P, Kroutil A, Zak F, Mistr A, Turanek J (2005) High effectiveness of platinum(IV) complex with adamantylamine in overcoming resistance to cisplatin and suppressing proliferation of ovarian cancer cells in vitro. Biochem Pharmacol 69:373–383. doi:10.1016/j.bcp.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072. doi:10.1101/gad.10.9.1054

    Article  CAS  PubMed  Google Scholar 

  9. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983. doi:10.1101/gad.12.19.2973

    Article  CAS  PubMed  Google Scholar 

  10. Jayaraman L, Prives C (1999) Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci 55:76–87. doi:10.1007/s000180050271

    Article  CAS  PubMed  Google Scholar 

  11. Meek DW (1998) New developments in the multi-site phosphorylation and integration of stress signalling at p53. Int J Radiat Biol 74:729–737. doi:10.1080/095530098141005

    Article  CAS  PubMed  Google Scholar 

  12. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841. doi:10.1101/gad.12.18.2831

    Article  CAS  PubMed  Google Scholar 

  13. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825. doi:10.1016/0092-8674(93)90500-P

    Article  CAS  PubMed  Google Scholar 

  14. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  15. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023. doi:10.1016/0092-8674(94) 90379-4

    Article  CAS  PubMed  Google Scholar 

  16. Loignon M, Fetni R, Gordon AJ, Drobetsky EA (1997) A p53-independent pathway for induction of p21waf1cip1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts. Cancer Res 57:3390–3394

    CAS  PubMed  Google Scholar 

  17. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331. doi:10.1016/S0092-8674(00) 81871-1

    Article  CAS  PubMed  Google Scholar 

  18. Lane DP (1994) p53 and human cancers. Br Med Bull 50:582–599

    CAS  PubMed  Google Scholar 

  19. Blaydes JP, Hupp TR (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17:1045–1052. doi:10.1038/sj.onc.1202014

    Article  CAS  PubMed  Google Scholar 

  20. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360. doi:10.1074/jbc.273.16.9357

    Article  CAS  PubMed  Google Scholar 

  21. Giaccone G, Battey J, Gazdar AF, Oie H, Draoui M, Moody TW (1992) Neuromedin B is present in lung cancer cell lines. Cancer Res 52:2732s–2736s

    CAS  PubMed  Google Scholar 

  22. Shaulian E, Haviv I, Shaul Y, Oren M (1995) Transcriptional repression by the C-terminal domain of p53. Oncogene 10:671–680

    CAS  PubMed  Google Scholar 

  23. Vojtesek B, Bartek J, Midgley CA, Lane DP (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods 151:237–244. doi:10.1016/0022-1759(92)90122-A

    Article  CAS  PubMed  Google Scholar 

  24. Stephen CW, Helminen P, Lane DP (1995) Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions. J Mol Biol 248:58–78. doi:10.1006/jmbi.1995.0202

    Article  CAS  PubMed  Google Scholar 

  25. Fredersdorf S, Milne AW, Hall PA, Lu X (1996) Characterization of a panel of novel anti-p21Waf1/Cip1 monoclonal antibodies and immunochemical analysis of p21Waf1/Cip1 expression in normal human tissues. Am J Pathol 148:825–835

    CAS  PubMed  Google Scholar 

  26. Sheard MA, Krammer PH, Zaloudik J (1999) Fractionated gamma-irradiation renders tumour cells more responsive to apoptotic signals through CD95. Br J Cancer 80:1689–1696. doi:10.1038/sj.bjc.6690585

    Article  CAS  PubMed  Google Scholar 

  27. Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J (1997) Up-regulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int J Cancer 73:757–762. doi:10.1002/(SICI)1097-0215(19971127)73:5<757::AID-IJC24>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  28. Brabec V (2002) DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog Nucleic Acid Res Mol Biol 71:1–68. doi:10.1016/S0079-6603(02)71040-4

    Article  CAS  PubMed  Google Scholar 

  29. Hrstka R, Powell DJ, Kvardova V, Roubalova E, Bourougaa K, Candeias MM, Sova P, Zak F, Fahraeus R, Vojtesek B (2008) The novel platinum(IV) complex LA-12 induces p53 and p53/47 responses that differ from the related drug, cisplatin. Anticancer Drugs 19:369–379. doi:10.1097/CAD.0b013e3282f7f500

    Article  CAS  PubMed  Google Scholar 

  30. Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805. doi:10.1038/nrc1455

    Article  CAS  PubMed  Google Scholar 

  31. Jackel M, Kopf-Maier P (1991) Influence of cisplatin on cell-cycle progression in xenografted human head and neck carcinomas. Cancer Chemother Pharmacol 27:464–471. doi:10.1007/BF00685161

    Article  CAS  PubMed  Google Scholar 

  32. Horvath V, Soucek K, Svihalkova-Sindlerova L, Vondracek J, Blanarova O, Hofmanova J, Sova P, Kozubik A (2007) Different cell cycle modulation following treatment of human ovarian carcinoma cells with a new platinum(IV) complex vs cisplatin. Invest New Drugs 5:435–443. doi:10.1007/s10637-007-9062-7

    Article  Google Scholar 

  33. Horvath V, Blanarova O, Svihalkova-Sindlerova L, Soucek K, Hofmanova J, Sova P, Kroutil A, Fedorocko P, Kozubik A (2006) Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells. Gynecol Oncol 102:32–40. doi:10.1016/j.ygyno.2005.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PLIVA-Lachema a. s. and IGA MZ CR NS/9812-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bořivoj Vojtěšek.

Additional information

Eva Roubalová and Veronika Kvardová contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubalová, E., Kvardová, V., Hrstka, R. et al. The effect of cellular environment and p53 status on the mode of action of the platinum derivative LA-12. Invest New Drugs 28, 445–453 (2010). https://doi.org/10.1007/s10637-009-9270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9270-4

Keywords

Navigation