Investigational New Drugs

, Volume 27, Issue 6, pp 543–551 | Cite as

Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis

  • Ansgar BrüningEmail author
  • Petra Burger
  • Marianne Vogel
  • Martina Rahmeh
  • Klaus Friese
  • Miriam Lenhard
  • Alexander Burges


Bortezomib, an approved drug for the treatment of certain haematological neoplasms, is currently being tested in clinical trials as a potential therapeutic agent against several types of solid cancer, including ovarian cancer. We have analyzed the effect of bortezomib on ovarian cancer cells and tissue explants either as a single agent or in combination with carboplatin, taxol, or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Bortezomib alone efficiently induced apoptosis in ovarian cancer cells. Apoptosis was preceded by an upregulation of the endoplasmic reticulum stress sensor ATF3, and increased the expression of cytoplasmic heat shock proteins. Bortezomib enhanced the sensitivity of ovarian cancer cells and tissue explants to an apoptosis-inducing TRAIL receptor antibody by upregulating the TRAIL receptor DR5. In contrast to the synergistic effect observed for TRAIL, the efficacy of the taxol treatment was reduced by bortezomib, and bortezomib inhibited the G2/M phase accumulation of ovarian cancer cells treated with taxol. Bortezomib alone or in combination with taxol induced a cell cycle arrest within the S phase, and downregulation of cdk1, a cyclin-dependent kinase that is necessary for the entry into the M phase. Thus, bortezomib can be regarded as a promising agent for the treatment of ovarian cancer and could either be administered as a single agent or in combination with TRAIL. However, a combination treatment with taxanes may not be beneficial and may even be less effective.


Ovarian cancer Bortezomib Apoptosis TRAIL Taxol Cell cycle 



We greatly appreciate the generous supply of Velcade, a trademark of Millennium Pharmaceuticals, by Ortho Biotech, Division of Janssen-Cilag GmbH, Neuss, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG BR 3641/1-1).


  1. 1.
    Tobinai K (2007) Proteasome inhibitor, bortezomib, for myeloma and lymphoma. Int J Clin Oncol 12:318–326 doi: 10.1007/s10147-007-0695-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:4647–4651 doi: 10.1158/1078-0432.CCR-07-0334 CrossRefGoogle Scholar
  3. 3.
    Schmid P, Kühnhardt D, Kiewe P, Lehenbauer-Dehm S, Schippinger W, Greil R, Lange W, Preiss J, Niederle N, Brossart P, Freier W, Kümmel S, Van de Velde H, Regierer A, Possinger K (2008) A phase I/II study of bortezomib and capecitabine in patients with metastatic breast cancer previously treated with taxanes and/or anthracyclines. Ann Oncol 19:871–876 doi: 10.1093/annonc/mdm569 CrossRefPubMedGoogle Scholar
  4. 4.
    Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR (2005) Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 23:5943–5949 doi: 10.1200/JCO.2005.16.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Ramirez PT, Landen CN Jr, Coleman RL, Milam MR, Levenback C, Johnston TA, Gershenson DM (2008) Phase I trial of the proteasome inhibitor bortezomib in combination with carboplatin in patients with platinum- and taxane-resistant ovarian cancer. Gynecol Oncol 108:68–71 doi: 10.1016/j.ygyno.2007.08.071 CrossRefPubMedGoogle Scholar
  6. 6.
    Ryan DP, O’Neil BH, Supko JG, Rocha Lima CM, Dees EC, Appleman LJ, Clark J, Fidias P, Orlowski RZ, Kashala O, Eder JP, Cusack JC Jr (2006) A Phase I study of bortezomib plus irinotecan in patients with advanced solid tumors. Cancer 107:2688–2697 doi: 10.1002/cncr.22280 CrossRefPubMedGoogle Scholar
  7. 7.
    Dy GK, Thomas JP, Wilding G, Bruzek L, Mandrekar S, Erlichman C, Alberti D, Binger K, Pitot HC, Alberts SR, Hanson LJ, Marnocha R, Tutsch K, Kaufmann SH, Adjei AA (2005) A phase I and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, velcade), in patients with advanced cancer. Clin Cancer Res 11:3410–3416 doi: 10.1158/1078-0432.CCR-04-2068 CrossRefPubMedGoogle Scholar
  8. 8.
    Milano A, Iaffaioli RV, Caponigro F (2007) The proteasome: a worthwhile target for the treatment of solid tumours. Eur J Cancer 43:1125–1133 doi: 10.1016/j.ejca.2007.01.038 CrossRefPubMedGoogle Scholar
  9. 9.
    Eltabbakh GH, Awtrey CS (2001) Current treatment for ovarian cancer. Expert Opin Pharmacother 2:109–124 doi: 10.1517/14656566.2.1.109 CrossRefPubMedGoogle Scholar
  10. 10.
    Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163PubMedCrossRefGoogle Scholar
  11. 11.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310 doi: 10.1038/35042675 CrossRefPubMedGoogle Scholar
  12. 12.
    Van Waes C (2007) Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13:1076–1082 doi: 10.1158/1078-0432.CCR-06-2221 CrossRefPubMedGoogle Scholar
  13. 13.
    Abdollahi T (2004) Potential for TRAIL as a therapeutic agent in ovarian cancer. Vitam Horm 67:347–364 doi: 10.1016/S0083-6729(04)67018-X CrossRefPubMedGoogle Scholar
  14. 14.
    Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7:730–742 doi: 10.2174/156800907783220417 CrossRefPubMedGoogle Scholar
  15. 15.
    Mani A, Gelmann EP (2005) The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol 23:4776–4789 doi: 10.1200/JCO.2005.05.081 CrossRefPubMedGoogle Scholar
  16. 16.
    Zimmermann J, Erdmann D, Lalande I, Grossenbacher R, Noorani M, Fürst P (2000) Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene 19:2913–2920 doi: 10.1038/sj.onc.1203606 CrossRefPubMedGoogle Scholar
  17. 17.
    Benz EJ Jr, Nathan DG, Amaravadi RK, Danial NN (2007) Targeting the cell death–survival equation. Clin Cancer Res 13:7250–7253 doi: 10.1158/1078-0432.CCR-07-2221 CrossRefPubMedGoogle Scholar
  18. 18.
    Fribley A, Wang CY (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5:745–748PubMedGoogle Scholar
  19. 19.
    Saulle E, Petronelli A, Pasquini L, Petrucci E, Mariani G, Biffoni M, Ferretti G, Scambia G, Benedetti-Panici P, Cognetti F, Humphreys R, Peschle C, Testa U (2007) Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis. Apoptosis 12:635–655 doi: 10.1007/s10495-006-0025-9 CrossRefPubMedGoogle Scholar
  20. 20.
    Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL-potential and risks of a novel anticancer therapy. J Mol Med 85:923–935 doi: 10.1007/s00109-007-0194-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Fanucchi MP, Fossella FV, Belt R, Natale R, Fidias P, Carbone DP, Govindan R, Raez LE, Robert F, Ribeiro M, Akerley W, Kelly K, Limentani SA, Crawford J, Reimers HJ, Axelrod R, Kashala O, Sheng S, Schiller JH (2006) Randomized phase II study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J Clin Oncol 24:5025–5033 doi: 10.1200/JCO.2006.06.1853 CrossRefPubMedGoogle Scholar
  22. 22.
    Pines J, Rieder CL (2001) Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3:E3–E6 doi: 10.1038/35050676 CrossRefPubMedGoogle Scholar
  23. 23.
    Bashir T, Pagano M (2005) Cdk1: the dominant sibling of Cdk2. Nat Cell Biol 7:779–781 doi: 10.1038/ncb0805-779 CrossRefPubMedGoogle Scholar
  24. 24.
    Yu J, Tiwari S, Steiner P, Zhang L (2003) Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol Ther 2:694–649PubMedGoogle Scholar
  25. 25.
    Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY (2006) Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281:31440–31447 doi: 10.1074/jbc.M604356200 CrossRefPubMedGoogle Scholar
  26. 26.
    Laframboise S, Chapman W, McLaughlin J, Andrulis IL (2000) p53 mutations in epithelial ovarian cancers: possible role in predicting chemoresistance. Cancer J 6:302–308PubMedGoogle Scholar
  27. 27.
    Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK (2003) Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod Biol Endocrinol 1:66 doi: 10.1186/1477-7827-1-66 CrossRefPubMedGoogle Scholar
  28. 28.
    Colombo N, Van Gorp T, Parma G, Amant F, Gatta G, Sessa C, Vergote I (2006) Ovarian cancer. Crit Rev Oncol Hematol 60:159–179 doi: 10.1016/j.critrevonc.2006.03.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ansgar Brüning
    • 1
    Email author
  • Petra Burger
    • 1
  • Marianne Vogel
    • 1
  • Martina Rahmeh
    • 1
  • Klaus Friese
    • 1
  • Miriam Lenhard
    • 1
  • Alexander Burges
    • 1
  1. 1.Department of Obstetrics/GynecologyUniversity Hospital MunichMunichGermany

Personalised recommendations