Investigational New Drugs

, 27:534 | Cite as

Synthesis of novel 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole derivatives as antiproliferative agents: A structure–activity relationship study

  • S. B. Benaka Prasad
  • K. Vinaya
  • C. S. Ananda Kumar
  • Sanjay Swarup
  • K. S. RangappaEmail author


A series of novel 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole derivatives 5(a–m) were synthesized with different substituted aromatic/heterocyclic acid chlorides (R-CO-Cl) and characterized by 1H NMR, LC/MS, FTIR and elemental analyses. All the compounds synthesised were evaluated for their antiproliferative activity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The antiproliferative effects of the synthesised compounds were tested against viable human skin fibroblast cells and carcinoma cells namely HeLa cells, HT-29 cells, MCF-7 cells, HepG-2 cells by adopting positive and negative control. The importance of the aromatic and heterocyclic moiety was confirmed. From the SAR studies, it reveals that, the substitution at N-terminal of 6-fluoro-3-(4-piperidinyl)-1,2-benzisoxazole by the heterocyclic ring plays a dominant role and was responsible for the antiproliferative activity. Among the synthesized compounds 5a, 5d and 5k have showed potent antiproliferative activity on all the carcinoma cells tested.


Isonipecotic acid 6-fluoro-3-(4-piperidinyl)-1 2-benzisoxazole Acid chloride MTT assay Antiproliferative activity Cancer therapy Cell proliferation. 



The authors are grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial support under the project 01(1904)/03/EMR-II 2004, CSIR-SRF to K. Vinaya order No. 09/119(0172)2K8 EMR-I, Elemental Analysis and IR spectroscopic data were obtained from instruments funded by DST-FIST and UGC-SAP (phase I) No.F.540/10/DRS/2004-05 (SAP-I) is greatly acknowledged.


  1. 1.
    Verweij J, Jonge MJA (2000) Achievements and future of chemotherapy. Eur J Cancer 36:1479–1487. doi: 10.1016/S0959-8049(00)00133-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Verdecchia A, Mariotto A, Capocaccia R, Gatta G, Micheli A, Sant M, Berrino F (2001) Incidence and prevalence of all cancerous diseases in Italy: trends and implications. Eur J Cancer 37:1149–1157. doi: 10.1016/S0959-8049(01)00094-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Garret MD, Workman P (1999) Discovering novel chemotherapeutic drugs for the third millennium. Eur J Cancer 35:2010–2030. doi: 10.1016/S0959-8049(99)00280-4 CrossRefGoogle Scholar
  4. 4.
    Mencher SK, Wang LG (2005) Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol 5:3. doi: 10.1186/1472-6904-5-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Jimeno A, Hidalgo M (2006) Multitargeted therapy: can promiscuity be praised in an era of political correctness. Crit Rev Oncol Hematol 59:150–158. doi: 10.1016/j.critrevonc.2006.01.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Kirk KL, Filler R (1996) In Biomedical Frontiers of Fluorine Chemistry, Symposium Series, vol 639. American Chemical Society, Washington, DC, pp 1–24.Google Scholar
  7. 7.
    Gelders YG, Heylen SLE, Vander BG, Reyntjens AJM, Janssen PAJ (1990) Pilot clinical investigation of risperidone in the treatment of psychotic patients. Pharmacopsychiatry 23:206–211. doi: 10.1055/s-2007-1014509 CrossRefPubMedGoogle Scholar
  8. 8.
    Dollery C (1999) Therapeutic drugs. Churchill Livingstone, Edinburgh, UKGoogle Scholar
  9. 9.
    Park BK, Kitteringham NR (1994) Effects of fluorine substitution on drug metabolism: pharmacological and toxicological implications. Drug Metab Rev 26:605–643. doi: 10.3109/03602539408998319 CrossRefPubMedGoogle Scholar
  10. 10.
    Deng BL, Cullen MD, Zhou Z, Hartman TL, Buckheit RW Jr, Pannecouque C, Clercq ED, Fanwick PE, Cushmana M (2006) Synthesis and anti-HIV activity of new alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTIs) incorporating benzoxazolone and benzisoxazole rings. Bioorg Med Chem 14:2366–2374. doi: 10.1016/j.bmc.2005.11.014 CrossRefPubMedGoogle Scholar
  11. 11.
    Jain M, Kwon CH (2003) 1,2-Benzisoxazole phosphorodiamidates as novel anticancer prodrugs requiring bioreductive activation. J Med Chem 46(25):5428–5436. doi: 10.1021/jm020581y CrossRefPubMedGoogle Scholar
  12. 12.
    Saunders JC, Williamson WR (1979) Potential antiinflammatory compounds. 2. Acidic antiinflammatory 1,2-benzisoxazoles. J Med Chem 22(12):1554–1558. doi: 10.1021/jm00198a026 CrossRefPubMedGoogle Scholar
  13. 13.
    Nuhrich A, Lembege MV, Vercauteren J, Dokhan R, Renard P, Devaux G (1996) Synthesis and binding affinities of a series of 1,2-benzisoxazole-3-carboxamides to dopamine and serotonin receptors. Eur J Med Chem 31:957–964. doi: 10.1016/S0223-5234(97)86174-0 CrossRefGoogle Scholar
  14. 14.
    Stiff DD, Robicheau JT, Zemaitis MA (1992) Reductive metabolism of the anticonvulsant agent zonisamide, a 1,2-benzisoxazole derivative. Xenobiotica 22(1):1–11CrossRefPubMedGoogle Scholar
  15. 15.
    Clive BP, Scott ES, Phillip SS, Michael RK (1999) Synthesis and evaluation of 6-[11C]Methoxy-3-[2- [1-(phenylmethyl)-4-piperidinyl]ethyl]-1,2-benzisoxazole as an in vivo radioligand for acetylcholinesterase. Nucl Med Biol 26(1):99–103. doi: 10.1016/S0969-8051(98)00078-X CrossRefGoogle Scholar
  16. 16.
    Priya BS, Basappa, Swamy SN, Rangappa KS (2005) Synthesis and characterization of novel 6-fluoro-4-piperidinyl-1,2-benzisoxazole amides and 6-fluoro-chroman-2-carboxamides: antimicrobial studies. Bioorg Med Chem 13(7):2623–2628. doi: 10.1016/j.bmc.2005.01.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Chandrappa S, Benaka Prasad SB, Vinaya K, Ananda Kumar CS, Thimmegowda NR, Rangappa KS (2008) Synthesis and In vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazolidine-2,4-diones. Invest New Drugs 26:437–444. doi: 10.1007/s10637-008-9130-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Ananda Kumar CS, Benaka Prasad SB, Vinaya K, Chandrappa S, Thimmegowda NR Sanjay Swarup, Rangappa KS (2008) Synthesis and antiproliferative activity of substituted diazaspiro hydantoins: a structure–activity relationship study. Invest New Drugs. doi: 10.1007/s10637-008-9150-3.
  19. 19.
    Ananda Kumar CS, Nanjunda Swamy S, Thimmegowda NR, Benaka Prasad SB, George WY, Rangappa KS (2007) Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Med Chem Res 16:179–187. doi: 10.1007/s00044-007-9022-y CrossRefGoogle Scholar
  20. 20.
    Ananda Kumar CS, Kavitha CV, Vinaya K, Benaka Prasad SB, Thimmegowda NR, Chandrappa S, Sathees CR, Rangappa KS (2008) Synthesis and antiproliferative activity of substituted diazaspiro hydantoins: a structure–activity relationship study. Invest New Drugs. doi: 10.1007/s10637-008-9179-3
  21. 21.
    Basappa, Mantelingu K, Sadashiva MP, Rangappa KS (2004) A simple and efficient method for the synthesis 1,2-benzisoxazoles: a series of its potent acetylcholinesterase inhibitors. Indian J Chem 43(B):1954–1957Google Scholar
  22. 22.
    Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seni D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. B. Benaka Prasad
    • 1
  • K. Vinaya
    • 1
  • C. S. Ananda Kumar
    • 1
  • Sanjay Swarup
    • 2
  • K. S. Rangappa
    • 1
    Email author
  1. 1.Department of Studies in ChemistryUniversity of MysoreManasagangotriIndia
  2. 2.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations