Investigational New Drugs

, 27:517 | Cite as

Boldine: a potential new antiproliferative drug against glioma cell lines

  • Daniéli Gerhardt
  • Ana Paula Horn
  • Mariana Maier Gaelzer
  • Rudimar Luiz Frozza
  • Andrés Delgado-Cañedo
  • Alessandra Luiza Pelegrini
  • Amélia T. Henriques
  • Guido Lenz
  • Christianne SalbegoEmail author


Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 μM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G2/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.


Glioma Proliferation Boldine Anti-tumor agent 



This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors thank Alessandra Heizelmann for the excellent technical assistance.


  1. 1.
    Aygeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4:209–224Google Scholar
  2. 2.
    Davis FG, McCarthy BJ, Freels S (1999) The conditional probability of survival of patients with primary malignant brain tumors: surveillance, epidemiology, and end results (SEER) data. Cancer 85:85–491, doi: 10.1002/(SICI)1097-0142(19990101)85:1<85::AID-CNCR12>3.0.CO;2-A CrossRefGoogle Scholar
  3. 3.
    Maher EA, Furnari FB, Bachoo RM et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333, doi: 10.1101/gad.891601 CrossRefPubMedGoogle Scholar
  4. 4.
    Weller M, Fontana A (1995) The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res Brain Res Rev 21:128–151, doi: 10.1016/0165-0173(95)00010-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Trog D, Fountoulakis M, Friedlein A et al (2006) Is current therapy of malignant gliomas beneficial for patients? Proteomics evidence of shifts in glioma cells expression patterns under clinically relevant treatment conditions. Proteomics 6:2924–2930, doi: 10.1002/pmic.200500587 CrossRefPubMedGoogle Scholar
  6. 6.
    Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56:237–243, doi: 10.1016/S0031-9422(00)00456-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037, doi: 10.1021/np030096l CrossRefPubMedGoogle Scholar
  8. 8.
    Stévigny C, Bailly C, Quetin-Leclercq J (2005) Cytotoxic and antitumour potentialities of aporphinoid alkaloids. Curr Med Chem Anti-Canc Agents 5:173–182CrossRefGoogle Scholar
  9. 9.
    Hidalgo ME, Farah M, Carrasco L et al (2005) Photostability and photoprotection factor of boldine and glaucine. J Photochem Photobiol B 80:65–69, doi: 10.1016/j.jphotobiol.2005.01.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Speisky H, Cassels BK, Lissi E et al (1991) Antioxidant properties of the alkaloid boldine in systems undergoing lipid peroxidation and enzyme inactivation. Biochem Pharmacol 41:1575–1581, doi: 10.1016/0006-2952(91)90156-Y CrossRefPubMedGoogle Scholar
  11. 11.
    Martínez J, Ríos L, Payá M et al (1992) Inhibition of non-enzymic lipid peroxidation by benzylisoquinoline alkaloids. Free Radic Biol Med 12:287–292, doi: 10.1016/0891-5849(92)90116-X CrossRefPubMedGoogle Scholar
  12. 12.
    Cederbaum A, Kikielka E, Speisky H (1992) Inhibition of rat liver microsomal lipid peroxidation by boldine. Biochem Pharmacol 44:1765–1772, doi: 10.1016/0006-2952(92)90070-Y CrossRefPubMedGoogle Scholar
  13. 13.
    Lanhers MC, Joyeux M, Soulimani R et al (1991) Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, Peumus boldus. Planta Med 57:110–115, doi: 10.1055/s-2006-960043 CrossRefPubMedGoogle Scholar
  14. 14.
    Hoet S, Stévigny C, Block S et al (2004) Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med 70:407–413, doi: 10.1055/s-2004-818967 CrossRefPubMedGoogle Scholar
  15. 15.
    Skehan P, Storeng R, Scudiero D et al (1990) New colorimetric cytotoxicity assay for anti-cancer-drug screening. J Natl Cancer Inst 82:1107–1112, doi: 10.1093/jnci/82.13.1107 CrossRefPubMedGoogle Scholar
  16. 16.
    Bernardi A, Jacques-Silva MC, Delgado-Cañedo A et al (2006) Nonsteroidal anti-inflamatory drugs inhibit the growth of C6 and U138-MG glioma cell lines. Eur J Pharmacol 532:214–222, doi: 10.1016/j.ejphar.2006.01.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Overton WR, McCoy JP Jr (1994) Reversing the effect of formalin on the binding of propidium iodide to DNA. Cytometry 16:351–356, doi: 10.1002/cyto.990160410 CrossRefPubMedGoogle Scholar
  18. 18.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182, doi: 10.1016/0165-0270(91)90128-M CrossRefPubMedGoogle Scholar
  19. 19.
    Valentim LM, Rodnight R, Geyer AB (2003) Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning to oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 118:379–386, doi: 10.1016/S0306-4522(02)00919-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Horn AP, Gerhardt D, Geyer AB (2005) Cellular death in hippocampus in response to PI3-K pathway inhibition and oxygen and glucose deprivation. Neurochem Res 30:355–361, doi: 10.1007/s11064-005-2609-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Tsuiki H, Nitta M, Tada M (2001) Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogene 20:420–429, doi: 10.1038/sj.onc.1204126 CrossRefPubMedGoogle Scholar
  22. 22.
    Hartmann A, Speit G (1997) The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicol Lett 90:183–188, doi: 10.1016/S0378-4274(96)03847-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261, doi: 10.1385/MB:26:3:249 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang W, Fei Z, Zhen H et al (2007) Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells. J Neurooncol 81:231–240, doi: 10.1007/s11060-006-9226-x CrossRefPubMedGoogle Scholar
  25. 25.
    Liu X, Wang J, Sun B et al (2007) Cell growth inhibition, G2M cell cycle arrest, and apoptosis induced by the novel compound Alternol in human gastric carcinoma cell line MGC803. Invest New Drugs 25:505–517, doi: 10.1007/s10637-007-9057-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Van den Bent MJ, Hegi ME, Stupp R (2006) Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer 42:582–588, doi: 10.1016/j.ejca.2005.06.031 CrossRefPubMedGoogle Scholar
  27. 27.
    Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642, doi: 10.1146/annurev.physiol.60.1.619 CrossRefPubMedGoogle Scholar
  28. 28.
    Morgan DO (1995) Principles of cdk regulation. Nature 374:131–134, doi: 10.1038/374131a0 CrossRefPubMedGoogle Scholar
  29. 29.
    Dirks PB, Rutka JT (1997) Current concepts in neuro-oncology: the cell cycle—a review. Neurosurgery 40:1000–1013, doi: 10.1097/00006123-199705000-00025 CrossRefPubMedGoogle Scholar
  30. 30.
    Fiers W, Beyaert R, Declercq W et al (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730, doi: 10.1038/sj.onc.1203249 CrossRefPubMedGoogle Scholar
  31. 31.
    Borner C, Monney L (1999) Apoptosis without caspases: an inefficient molecular guillotine? Cell Death Differ 6:497–507, doi: 10.1038/sj.cdd.4400525 CrossRefPubMedGoogle Scholar
  32. 32.
    Mochizuki T, Asai A, Saito N et al (2002) Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J Biol Chem 277:2790–2797, doi: 10.1074/jbc.M106361200 CrossRefPubMedGoogle Scholar
  33. 33.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776, doi: 10.1038/35037710 CrossRefPubMedGoogle Scholar
  34. 34.
    Chandna S (2004) Single-cell gel electrophoresis assay monitors precise kinetics of DNA fragmentation induced during programmed cell death. Cytometry A 61:127–133, doi: 10.1002/cyto.a.20071 CrossRefPubMedGoogle Scholar
  35. 35.
    Trog D, Moenkemann H, Breipohl W et al (2007) Non-sufficient cell cycle control as possible clue for the resistance of human malignant glioma cells to clinically relevant treatment conditions. Amino Acids 32:373–379, doi: 10.1007/s00726-006-0456-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniéli Gerhardt
    • 1
  • Ana Paula Horn
    • 1
  • Mariana Maier Gaelzer
    • 1
  • Rudimar Luiz Frozza
    • 1
  • Andrés Delgado-Cañedo
    • 2
  • Alessandra Luiza Pelegrini
    • 3
  • Amélia T. Henriques
    • 4
  • Guido Lenz
    • 3
  • Christianne Salbego
    • 1
    Email author
  1. 1.Programa de Pós graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUFRGSPorto AlegreBrazil
  2. 2.Laboratório de Cardiologia Molecular e CelularIC/FUC-RSPorto AlegreBrazil
  3. 3.Departamento de Biofísica, Instituto de BiociênciasUFRGSPorto AlegreBrazil
  4. 4.Departamento de Produção de Matéria Prima, Faculdade de FarmáciaUFRGSPorto AlegreBrazil

Personalised recommendations