Investigational New Drugs

, Volume 27, Issue 6, pp 491–502 | Cite as

The fungal secondary metabolite trichodimerol inhibits TGF-β dependent cellular effects and tube formation of MDA-MB-231 cells

  • Annegret Serwe
  • Timm Anke
  • Gerhard ErkelEmail author


The transforming growth factor-β (TGF-β) family of ligands has a pivotal role as regulators of cell growth, differentiation and migration. Overexpression of TGF-β has been associated with breast, colon, hepatocellular, lung and pancreatic cancer. Importantly, overexpression of TGF-β correlates with tumor progression, metastasis, angiogenesis and poor prognostic outcome. Therefore, TGF-β signaling has emerged as an attractive target for the development of new cancer therapeutics. In a search for metabolites from fungi inhibiting the TGF-β dependent expression of a reporter gene in HepG2 cells, we found that trichodimerol, a previously isolated bisorbicillinoid, inhibited serine phosphorylation of the TGF-β activated Smad2/3 transcription factors and antagonized the cellular effects of TGF-β including reporter gene activation and expression of TGF-β inducible genes in HepG2 and MDA-MB-231 cells. In addition, trichodimerol blocked IFN-γ, IL-6 and IL-4 induced activation of Stat1, Stat3 and Stat6 transcription factors by inhibiting serine and tyrosine phosphorylation. In an in vitro angiogenesis assay, 20 μM trichodimerol completely abrogated the capillary-like tube formation of MDA-MB-231 cells on Matrigel.


TGF-β signaling Inhibitor Trichodimerol Fungal metabolite Vasculogenic mimicry 



This work was supported by a grant from the Stiftung Rheinland-Pfalz für Innovation. We are very thankful to Prof. H. Anke for providing the crude extracts for the screening as well as Trichoderma longibrachiatum strain 049-2000. We thank Prof. S. Dooley, Medical Faculty of Mannheim, for providing the (AGCCAGACA)9MLP-Luc reporter plasmid, Prof. B. Brüne, University of Frankfurt, for providing the HepG2-pH3SVL cells, and Prof. O. Sterner, University of Lund, for the structure elucidation.


  1. 1.
    Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821 doi: 10.1038/nrc1208 CrossRefPubMedGoogle Scholar
  2. 2.
    Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–149 doi: 10.1146/annurev.immunol.24.021605.090737 CrossRefPubMedGoogle Scholar
  3. 3.
    Massague J, Seoane J, Wotton D (2006) Smad transcription factors. Genes Dev 19:2783–2810 doi: 10.1101/gad.1350705 CrossRefGoogle Scholar
  4. 4.
    Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228PubMedGoogle Scholar
  5. 5.
    Feng X-H, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693 doi: 10.1146/annurev.cellbio.21.022404.142018 CrossRefPubMedGoogle Scholar
  6. 6.
    Pardali K, Moustakas A (2007) Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62PubMedGoogle Scholar
  7. 7.
    Bierie B, Moses HL (2006) TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520 doi: 10.1038/nrc1926 CrossRefPubMedGoogle Scholar
  8. 8.
    Leivonen S-K, Kähäri V-M (2007) Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124 doi: 10.1002/ijc.23113 CrossRefPubMedGoogle Scholar
  9. 9.
    Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest 128:585S–590S doi: 10.1378/chest.128.6_suppl.585S CrossRefPubMedGoogle Scholar
  10. 10.
    Wahl SM, Wen J, Moutsopoulos N (2006) TGF-β: a mobile purveyor of immune privilege. Immunol Rev 213:213–227 doi: 10.1111/j.1600-065X.2006.00437.x CrossRefPubMedGoogle Scholar
  11. 11.
    Yingling JM, Blanchard KL, Sawyer S (2004) Development of TGF-β signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022 doi: 10.1038/nrd1580 CrossRefPubMedGoogle Scholar
  12. 12.
    Iyer S, Wang Z-G, Akhtari M, Zhao W, Seth P (2005) Targeting TGFβ signaling for cancer therapy. Cancer Biol Ther 4:261–266PubMedCrossRefGoogle Scholar
  13. 13.
    Pinkas J, Teicher BA (2006) TGF-β in cancer and as therapeutic target. Biochem Pharmacol 72:523–529 doi: 10.1016/j.bcp.2006.03.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Warr GA, Veitch JA, Walsh AW, Hesler GA, Pirnik DM, Leet JE, Lin PF, Medina IA, McBrien KD, Forenza S, Clark JM, Lam KS (1996) BMS-182123, a fungal metabolite that inhibits the production of TNF-alpha by macrophages and monocytes. J Antibiot (Tokyo) 49:234–240Google Scholar
  15. 15.
    White TJ, Bruns T, Lee S, Taylor AW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  16. 16.
    Erkel G, Belahmer H, Serwe A, Anke T, Kunz H, Kolshorn H, Liermann J, Opatz T (2008) Oxacyclododecindione, a novel inhibitor of IL-4 signaling from Exserohilum rostratum. J Antibiot (Tokyo) 61:285–290Google Scholar
  17. 17.
    Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100 doi: 10.1093/emboj/17.11.3091 CrossRefPubMedGoogle Scholar
  18. 18.
    Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of STAT6. Mol Cell Biol 16:5811–5820PubMedGoogle Scholar
  19. 19.
    Weidler M, Rether J, Anke T, Erkel G (2000) Inhibition of interleukin-6 signaling by galiellalactone. FEBS Lett 484:1–6 doi: 10.1016/S0014-5793(00)02115-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmatic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J 14:2580–2588PubMedGoogle Scholar
  21. 21.
    Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735PubMedGoogle Scholar
  22. 22.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007 doi: 10.1093/nar/29.9.e45 CrossRefGoogle Scholar
  23. 23.
    Ke O, Costa M (2006) Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol 40:1469–1480 doi: 10.1124/mol.106.027029 CrossRefGoogle Scholar
  24. 24.
    Giaccia A, Siim BG, Johnson RS (2003) Hif-1 as a target for drug development. Nat Rev Drug Discov 2:1–9 doi: 10.1038/nrd1199 CrossRefGoogle Scholar
  25. 25.
    Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TßRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685 doi: 10.1074/jbc.272.44.27678 CrossRefPubMedGoogle Scholar
  26. 26.
    Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115 doi: 10.1074/jbc.272.44.28107 CrossRefPubMedGoogle Scholar
  27. 27.
    Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 94:10669–10674 doi: 10.1073/pnas.94.20.10669 CrossRefPubMedGoogle Scholar
  28. 28.
    Chen CR, Kang Y, Massague J (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc Natl Acad Sci USA 98:992–999 doi: 10.1073/pnas.98.3.992 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254:157–164 doi: 10.1016/j.canlet.2006.12.036 CrossRefPubMedGoogle Scholar
  30. 30.
    Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukoc Biol 60:271–277PubMedGoogle Scholar
  31. 31.
    Nam J-S, Terabe M, Mamura M, Kang M-J, Chae H, Stuelten C, Kohn E, Tang B, Sabzevari H, Anver MR, Lawrence S, Danielpour D, Lonning S, Berzofsky JA, Wakefield LM (2008) An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68:3835–3643 doi: 10.1158/0008-5472.CAN-08-0215 CrossRefPubMedGoogle Scholar
  32. 32.
    Lee K, Roth RA, LaPres JJ (2007) Hypoxia, drug therapy and toxicity. Pharmacol Ther 113:229–246 doi: 10.1016/j.pharmthera.2006.08.001 CrossRefGoogle Scholar
  33. 33.
    Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290 doi: 10.1007/s10555-007-9066-y CrossRefPubMedGoogle Scholar
  34. 34.
    von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Boettinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β. J Biol Chem 275:11320–11326 doi: 10.1074/jbc.275.15.11320 CrossRefGoogle Scholar
  35. 35.
    Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signaling and its role in tumor pathogenesis. Acta Biochim Pol 52:329–337PubMedGoogle Scholar
  36. 36.
    Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-β. Breast Cancer Res 2:125–132 doi: 10.1186/bcr44 CrossRefPubMedGoogle Scholar
  37. 37.
    Döme B, Hendrix MJC, Paku S, Tóvári J, Tímár J (2007) Alternative vascularization mechanisms in cancer. Am J Pathol 170:1–15 doi: 10.2353/ajpath.2007.060302 CrossRefPubMedGoogle Scholar
  38. 38.
    Hendrix MJC, Seftor EA, Hess AR, Seftor REB (2003) Vasculogenic mimicry and tumor-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421 doi: 10.1038/nrc1092 CrossRefPubMedGoogle Scholar
  39. 39.
    Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P (2005) Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 7:R422–R435 doi: 10.1186/bcr1019 CrossRefPubMedGoogle Scholar
  40. 40.
    Reich NC, Liu L (2006) Tracking Stat nuclear traffic. Nat Rev Immunol 6:602–612 doi: 10.1038/nri1885 CrossRefPubMedGoogle Scholar
  41. 41.
    Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637 doi: 10.1038/sj.onc.1203481 CrossRefPubMedGoogle Scholar
  42. 42.
    Yu H, Jove R (2004) The Stats of cancer-new molecular targets come of age. Nat Rev Cancer 4:97–105 doi: 10.1038/nrc1275 CrossRefPubMedGoogle Scholar
  43. 43.
    Chen Z, Han ZC (2008) Stat3: a critical transcription activator in angiogenesis. Med Res Rev 28:185–200 doi: 10.1002/med.20101 CrossRefPubMedGoogle Scholar
  44. 44.
    Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107 doi: 10.2174/156800907780006922 CrossRefPubMedGoogle Scholar
  45. 45.
    Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6:107–121 doi: 10.2174/156800906776056491 CrossRefPubMedGoogle Scholar
  46. 46.
    Stocking EM, Williams RM (2003) Chemistry and biology of biosynthetic Diels–Alder reactions. Angew Chem Int Ed 42:3078–3115 doi: 10.1002/anie.200200534 CrossRefGoogle Scholar
  47. 47.
    Lee D, Lee JH, Cai XF, Shin JC, Lee K, Hong Y-S, Lee JJ (2005) Fungal metabolites, sorbicillinoid polyketides and their effects on the activation of peroxisome proliferator-activated receptor γ. J Antibiot (Tokyo) 58:615–620Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Biotechnology and Drug Research (IBWF e. V.)KaiserslauternGermany
  2. 2.Department of BiotechnologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations