Advertisement

Investigational New Drugs

, Volume 27, Issue 4, pp 347–355 | Cite as

Chemopreventive potential of Epoxy clerodane diterpene from Tinospora cordifolia against diethylnitrosamine-induced hepatocellular carcinoma

  • Muniyappan Dhanasekaran
  • Arul-Albert Baskar
  • Savarimuthu IgnacimuthuEmail author
  • Paul Agastian
  • Veeramuthu Duraipandiyan
PRECLINICAL STUDIES

Summary

Medicinal plants are a promising source for identification of lead molecules for cancer therapy. In our continuous search to discover bioactive compounds from natural products, we isolated (5R, 10R)-4R, 8R-dihydroxy-2S, 3R:15, 16-diepoxycleroda-13(16), 17, 12S:18,1S-dilactone (ECD), a diterpenoid from Tinospora cordifolia and studied its chemopreventive potential in diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) rats. Fifty male Wistar rats were divided into five groups. Group I served as normal control. Group II–IV were given DEN (0.01% in drinking water) for twenty weeks. In addition, Group III (preventive treatment) received ECD (10 mg/kg body weight) throughout the study. Group IV (curative treatment) received ECD (10 mg/kg body weight) for the last 8 weeks. Group V received ECD alone (10 mg/kg body weight) throughout the experimental period. At the end of the experimental period all the animals were sacrificed and analyzed for biochemical end points to assess the effect of ECD treatment in DEN induced HCC. The animals treated with DEN showed a decrease in the activities of antioxidant (SOD, CAT) and detoxification enzymes (GSH, GPx) with increase in the activities of the hepatic markers (SGOT, SGPT, LDH). Treatment of ECD in both preventive and curative DEN induced animals increased the level of antioxidants and detoxification enzymes, and decreased serum transaminase level and hepatic marker enzymes to near normal. Histopathological and nodular incidence also confirmed that ECD remarkably reduced tumor incidence and reversed damaged hepatocytes to normal. Our findings confirm that ECD exhibits preventive effect against chemically induced HCC in rats. ECD can be a potent chemopreventive drug for HCC.

Keywords

Hepatocellular carcinoma Epoxy clerodane diterpene Tinospora cordifolia (5R,10R)-4R,8R-Dihydroxy-2S,3R:15,16-diepoxycleroda-13(16),17,12S:18,1S-dilactone Diethylnitrosamine 

Abbreviations

HCC

hepatocellular carcinoma

DEN

diethyl nitrosamine

ECD

epoxy clerodane diterpene

SGOT

serum glutamyl oxalate transaminase

SGPT

serum glutamyl pyruvate transaminase

LDH

lactate dehydrogenase

GGT

gamma glutamyl transpeptidase

GST

glutathione-S-transferase

GSH

glutathione reductase

GPx

glutathione peroxidase

SOD

superoxide dismutase

CAT

catalase

PEG

poly ethylene glycol

ROS

reactive oxygen species

Fe-NTA

ferric nitrilotriacetate

Notes

Acknowledgments

We are grateful to Dr. C. S. Vijayalakshmi, Professor, Kilpauk Medical College, Chennai for helping in histopathological assay.

References

  1. 1.
    Feo FM, Miglio RD, Simile MM, Muroni MR, Calvisi DF, Frau M, Pascale RM (2006) Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim Biophys Acta 1765:126–147PubMedGoogle Scholar
  2. 2.
    Feitelson MA, Sun B, Tufan NLS, Liu J, Pan J, Lian Z (2002) Genetic mechanisms of hepatocarcinogenesis. Oncogene 21:2593–2604, doi: 10.1038/sj.onc.1205434 PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917, doi: 10.1016/S0140-6736(03)14964-1 PubMedCrossRefGoogle Scholar
  4. 4.
    Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077, doi: 10.1126/science.278.5340.1073 PubMedCrossRefGoogle Scholar
  5. 5.
    Digiovanni J (1994) Multistage carcinogenesis in mouse skin. Pharmacol Ther 54:63–128, doi: 10.1016/0163-7258(92)90051-Z CrossRefGoogle Scholar
  6. 6.
    Di Stefano G, Fiume L, Bolondi L, Lanza M, Pariali M, Chieco P (2005) Enhanced uptake of lactosaminated human albumin by rat hepatocarcinomas: implications for an improved chemotherapy of primary liver tumours. Liver Int 25:854–860, doi: 10.1111/j.1478-3231.2005.1118.x PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng YL, Change WL, Lee SC, Liu YG, Chen CJ, Harn HJ (2004) Acetone extract of Angelica sinensis inhibits proliferation of human cancer cells via including cell cycle arrest and apoptosis. Life Sci 75:1579–1594, doi: 10.1016/j.lfs.2004.03.009 PubMedCrossRefGoogle Scholar
  8. 8.
    Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486PubMedGoogle Scholar
  9. 9.
    Pezzuto JM (1997) Plant derived anticancer agents. Biochem Pharmacol 53:121–133, doi: 10.1016/S0006-2952(96)00654-5 PubMedCrossRefGoogle Scholar
  10. 10.
    Chadha YR (1976) Publication and Information Directorate. CSIR, NewDelhi, The wealth of India, 10:251Google Scholar
  11. 11.
    Atal CK, Sharma ML, Kaul A, Khajuria A (1986) Immunomodulating agents of plant origin. Preliminary screening. J Ethnopharmacol 18(2):133–141, doi: 10.1016/0378-8741(86)90025-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Vedavathy S, Rao KN (1991) Antipyretic activity of six indigenous medicinal plants of Tirumala Hills Andhra Pradesh, India. J Ethnopharmacol 33:1–2, doi: 10.1016/0378-8741(91)90153-5 CrossRefGoogle Scholar
  13. 13.
    Sarma DNK, Khosa RL, Chansouria JPN, Sahai M (1995) Antiulcer activity of Tinospora cordifolia Miers and Centella asiatica Linn extracts. Phytother Res 9(8):589–590, doi: 10.1002/ptr.2650090811 CrossRefGoogle Scholar
  14. 14.
    Jagetia GC, Nayak V, Vidyasagar MS (1998) Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells. Cancer Lett 127:71–82, doi: 10.1016/S0304-3835(98)00047-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Kirtikar KR, Basu DD (1980) Indian medicinal plants. Lalit Mohan Basu Allahabad 1(2):75–81Google Scholar
  16. 16.
    Chauhan K (1995) Successful treatment of throat cancer with ayurvedic drugs. Suchitra Ayurved 47:840–842Google Scholar
  17. 17.
    Maurya R, Wazir V, Tyagi A, Kapil SR (1995) Clerodane diterpenoids from Tinospora cordifolia. Phytochemistry 38:659–661, doi: 10.1016/0031-9422(94)00686-N CrossRefGoogle Scholar
  18. 18.
    Oberlies NM, Burgess JP, Navarro HA, Pinos RE, Fairchild CR, Peterson RW, Soejatto DD, Famaworth NR, Kingdom AD, Wani MC, Wall ME (2002) Novel bioactive clerodane diterpenoids from the leaves and twings of Casearia sylvestris. J Nat Prod 65:95–99, doi: 10.1021/np010459m PubMedCrossRefGoogle Scholar
  19. 19.
    Prakash SCV, Hoch JM, Kingston DG (2002) Structure and stereochemistry of new cytotoxic clerodane diterpenoids from the bark of Casearia lucida from the Madagascar rainforest. J Nat Prod 65:100–107, doi: 10.1021/np010405c CrossRefGoogle Scholar
  20. 20.
    Morita H (1991) Structures and cytotoxic activity relationship of Casearins, New Clerodane Diterpenes from Casearia sylvestris Sw. Chem Pharm Bull (Tokyo) 39(2):693–697Google Scholar
  21. 21.
    Huang DM, Shen YC, Kung LF, Teng CM, Guh JH (2004) Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer PC-3 cells. Eur J Pharm 503:17–24, doi: 10.1016/j.ejphar.2004.09.040 CrossRefGoogle Scholar
  22. 22.
    Sadzuka Y, Sugiyama T, Shimoi K, Kinae N, Hirota S (1997) Protective effect of flavonoids on duxorubicin-induced cardiotoxicity. Toxicol Lett 92:1–7, doi: 10.1016/S0378-4274(97)00028-3 PubMedCrossRefGoogle Scholar
  23. 23.
    Barry H (1991) Antioxidant effects a basis for drug selection. Drugs 42:569, doi: 10.2165/00003495-199142040-00003 CrossRefGoogle Scholar
  24. 24.
    Prestera T, Zhang Y, Spencer SR, Wilczak C, Talalay P (1993) The electrophilic counter attack responses: protection against neoplasia and toxicity. Adv Enzyme Regul 33:281–296, doi: 10.1016/0065-2571(93)90024-8 PubMedCrossRefGoogle Scholar
  25. 25.
    Saydam N, Kirb A, Demir O, Hazan E, Oto O, Saydam O (1997) Determination of glutathione reductase, glutathione peroxidase and glutathione-S transferase levels in human lung cancer tissues. Cancer Lett 119:13–19, doi: 10.1016/S0304-3835(97)00245-0 PubMedCrossRefGoogle Scholar
  26. 26.
    Malairajan P, Narashiman S, Jessikalaveni K, Kavimani S (2007) Antiulcer activity of crude alcoholic extract of Toona ciliate Romer (heart wood). J Ethnopharmacol 110:348–351, doi: 10.1016/j.jep.2006.10.018 PubMedCrossRefGoogle Scholar
  27. 27.
    Swaminathan K, Bhatt RK, Sabata BK, Sinha UC (1988) Crystal structure of a new diterpenoid furanolactone from Tinospora cordifolia Meirs. Acta Crystallogr C 44:1421–1424, doi: 10.1107/S0108270188003798 CrossRefGoogle Scholar
  28. 28.
    Woo-song HA, Klm Ck, Song SE, Kang CB (2001) Study on mechanism of multistep hepatotumorigenesis in rat: development of hepatotumorigenesis. J Vet Sci 2(1):53–58Google Scholar
  29. 29.
    Jacobs WL (1971) A colorimetric assay for gamma-glutamyl transpeptidase. Clin Chim Acta 31(1):175–179, doi: 10.1016/0009-8981(71)90375-5 PubMedCrossRefGoogle Scholar
  30. 30.
    Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582(1):67–78PubMedGoogle Scholar
  31. 31.
    Rotruck JT, Pope AL, Ganther HE (1973) Selenium: biochemical role as a component of glutathione peroxidase, purification and assay. Science 179:588–590, doi: 10.1126/science.179.4073.588 PubMedCrossRefGoogle Scholar
  32. 32.
    Lowry OH, Rosenrough NJ, Farr AI, Randall RJ (1951) Protein determination using Folin Ciocalteau reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  33. 33.
    Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347:1593–1603, doi: 10.1056/NEJMra021902 PubMedCrossRefGoogle Scholar
  34. 34.
    Mayer SA, Kulkarni AP (2001) Hepatotoxicity. In: Hodgson E, Smart RC (eds) Introduction to biochemical toxicology. Wiley, New York, pp 599–628Google Scholar
  35. 35.
    Mary NK, Babu BH, Padikkala J (2003) Antiatherogenic effect of Caps HT2, a herbal Ayurvedic medicine formulation. Phytomedicine 10:474–482, doi: 10.1078/094471103322331412 PubMedCrossRefGoogle Scholar
  36. 36.
    Kwe MC (1996) Tumors of the liver. In: Zakim D, Boyer TD (eds) Hepatology—a text book of liver disease. Saunders, Philadelphia, pp 1513–1548Google Scholar
  37. 37.
    Bishayee A, Chatterjee M (1995) Inhibitory effect of vanadium on rat liver carcinogenesis initiated with diethylnitrosamine and promoted by phenobarbitol. Br J Cancer 71:1214–1220PubMedGoogle Scholar
  38. 38.
    Ansari RA, Tripathi SC, Patnaik GK, Dhawan BN (1991) Antihepatotoxic properties of picroliv, an active fraction from rhizomes of Picrorhiza kurroa. J Ethnopharmacol 34:61, doi: 10.1016/0378-8741(91)90189-K PubMedCrossRefGoogle Scholar
  39. 39.
    Gupta M, Mazumder UK, Sambath kumar R, Sivashankar T, Vamsi MLM (2004) Antitumor activity and antioxidant status of Caesalpinia bonducella against Ehrlich ascites carcinoma in Swiss albino mice. J Pharmacol Sci 94:177–184, doi: 10.1254/jphs.94.177 PubMedCrossRefGoogle Scholar
  40. 40.
    Rocchi E, Seium Y, Camellini L (1997) Hepatic tocopherol content in primary hepatocellular carcinoma and liver metastatis. Hepatology 26:67–72, doi: 10.1002/hep.510260109 PubMedCrossRefGoogle Scholar
  41. 41.
    Khan N, Sultana S (2005) Anticarcinogenic effect of Nymphaea alba against oxidative damage. Hyperproliferative response and renal carcinogenesis in wistar rats. Mol Cell Biochem 271:1–11, doi: 10.1007/s11010-005-2258-2 PubMedCrossRefGoogle Scholar
  42. 42.
    Klohs WD, Hamby JM (1999) Antiangiogenic agents. Curr Opin Biotechnol 10:544–549, doi: 10.1016/S0958-1669(99)00033-6 PubMedCrossRefGoogle Scholar
  43. 43.
    Lindenmeyer MT, Hrenn A, Kern C, Castro V, Siedle B, Merfort I et al (2008) Sesquiterpenes lactones as inhibitor of IL-8 expression in HeLa cells. Bioorg Med Chem 14(8):2487–2497, doi: 10.1016/j.bmc.2005.11.027 CrossRefGoogle Scholar
  44. 44.
    Chung FL, Schwartz J, Herzog CR, Yang YM (2003) Tea and cancer prevention: studies in animals and humans. J Nutr 133:3268S–3274SPubMedGoogle Scholar
  45. 45.
    Prince PS, Menon VP (2001) Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytother Res 5(3):213–218, doi: 10.1002/ptr.707 Google Scholar
  46. 46.
    Seifried HE, McDonald SS, Anderson DE, Greenwald P, Milner JA (2003) The antioxidant conundrum in cancer. Cancer Res 63:4295–4298PubMedGoogle Scholar
  47. 47.
    Masella R, Vari R, D’Archivio M, Benedetto R, Matarrese P, Malorni W, Scazzocchio B, Giovannini C (2004) Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J Nutr 134:785–791PubMedGoogle Scholar
  48. 48.
    Hatono S, Jimenez A, Wargovich MJ (1996) Chemopreventive effect of S-allylcysteine and its relationship to the detoxication enzyme glutathione S-transferase. Carcinogenesis 17:1041–1044, doi: 10.1093/carcin/17.5.1041 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Muniyappan Dhanasekaran
    • 1
  • Arul-Albert Baskar
    • 1
  • Savarimuthu Ignacimuthu
    • 1
    Email author
  • Paul Agastian
    • 1
  • Veeramuthu Duraipandiyan
    • 1
  1. 1.Division of EthnopharmacologyEntomology Research Institute, Loyola CollegeChennaiTamil NaduIndia

Personalised recommendations