Investigational New Drugs

, Volume 27, Issue 4, pp 327–337 | Cite as

Synthesis and in vitro cytotoxic evaluation of novel diazaspiro bicyclo hydantoin derivatives in human leukemia cells: A SAR study

  • C. S. Ananda Kumar
  • C. V. Kavitha
  • K. Vinaya
  • S. B. Benaka Prasad
  • N. R. Thimmegowda
  • S. Chandrappa
  • Sathees C. RaghavanEmail author
  • K. S. RangappaEmail author


To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by 1H NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 μM. In addition, the cytotoxic activities of the compounds 7(a–o) bearing the substituents at N−3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N−8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.


Diazaspiro bicyclo hydantoin Cytotoxic activities Trypan blue dye exclusion assay MTT assay Leukemia SAR 



The authors are grateful to UGC, Govt. of India for financial support to K.S.R. under the project UGC-SAP (Phase I) vide No. F. 540/10/DRS/2004-05 (SAP I). Grants from DBT India (BT/PRS129/GBD/27/-7/2006) and Lady Tata Memorial Trust, London, UK for SCR is also acknowledged.


  1. 1.
    Canadian Cancer Society-National Cancer Institute of Canada Canadian Cancer Statistics (2005) Toronto, Canada, April 2005, ISSN: 0835-2976Google Scholar
  2. 2.
    American Cancer Society Cancer Facts and Figures (2006) Atlanta: American Cancer Society, 2006Google Scholar
  3. 3.
    Robert J, Jarry C (2003) Multidrug resistance reversal agents. J Med Chem 46:4805–4817. doi: 10.1021/jm030183a PubMedCrossRefGoogle Scholar
  4. 4.
    Monterrey IG, Santell G, Campiglia P, Califano D, Falasconi F, Pisano C et al (2005) Synthesis and cytotoxic evaluation of novel spirohydantoin derivatives of the dihydrothieno[2,3-b]naphtho-4,9-dione System. J Med Chem 48:1152–1157. doi: 10.1021/jm0408565 CrossRefGoogle Scholar
  5. 5.
    Fiallo MML, Kozlowski H, Suillerot AG (2001) Mitomycin antitumor compounds Part 1. C D studies on their molecular structure. Eur J Pharm Sci 12:487–494. doi: 10.1016/S0928-0987(00)00200-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Potin D, Launay M, Nicolai E, Fabreguette M, Malabre P, Caussade F et al (2005) De novo design, synthesis, and in vitro activity of LFA-1 antagonists based on a bicyclic[5.5]hydantoin scaffold. Bioorg Med Chem Lett 15:1161–1164. doi: 10.1016/j.bmcl.2004.12.007 PubMedCrossRefGoogle Scholar
  7. 7.
    Lee J, Kim J, Koh JS, Chung HH, Kim KH (2006) Hydantoin derivatives as non-peptidic inhibitors of Ras farnesyl transferase. Bioorg Med Chem Lett 16:1954–1956. doi: 10.1016/j.bmcl.2005.12.074 PubMedCrossRefGoogle Scholar
  8. 8.
    Carmi C, Cavazzoni A, Zuliani V, Lodola A, Bordi F, Plazzi PV (2006) 5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorg Med Chem Lett 16:4021–4025. doi: 10.1016/j.bmcl.2006.05.010 PubMedCrossRefGoogle Scholar
  9. 9.
    Kirk KL (2006) Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules. J Fluor Chem 127(8):1013–1029. doi: 10.1016/j.jfluchem.2006.06.007 CrossRefGoogle Scholar
  10. 10.
    Kirk KL (2006) Selective fluorination in drug design and development: an overview of biochemical rationales. Curr Top Med Chem 6(14):1447–1456. doi: 10.2174/156802606777951073 PubMedCrossRefGoogle Scholar
  11. 11.
    Mueller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881–1886. doi: 10.1126/science.1131943 CrossRefGoogle Scholar
  12. 12.
    Swinson J (2007) Fully functional fluorine. Pharmachem 4:38–41Google Scholar
  13. 13.
    Begue J-P, Bonnet-Delpon D (2006) Fluorine: an invaluable tool in medicinal chemistry. Actual Chim (301–302):83–87Google Scholar
  14. 14.
    Isanbor C, O’Hagan D (2006) Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluor Chem 127:303–319. doi: 10.1016/j.jfluchem.2006.01.011 CrossRefGoogle Scholar
  15. 15.
    Chandrappa S, Benaka Prasad SB, Vinaya K, Ananda Kumar CS, Thimmegowda NR, Rangappa KS (2008) Synthesis and in vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazolidine-2,4-diones. Invest New Drugs 26:437–444. doi: 10.1007/s10637-008-9130-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Ananda Kumar CS, Benaka Prasad SB, Vinaya K, Chandrappa S, Thimmegowda NR, Ranganatha SR, Sanjay Swarup, Rangappa KS (2008) Synthesis and antiproliferative activity of substituted diazaspiro hydantoins: a SAR study. Invest New Drugs. doi: 10.1007/s10637-008-9150-3
  17. 17.
    Ananda Kumar CS, Nanjunda Swamy S, Thimmegowda NR, Benaka Prasad SB, Yip GW, Rangappa KS (2007) Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Med Chem Res 16:179–187. doi: 10.1007/s00044-007-9022-y CrossRefGoogle Scholar
  18. 18.
    Anil Kumar C, Nanjunda Swamy S, Gaonkar SL, Basappa, Bharathi PS, Rangappa KS (2007) N-substituted-2-butyl-5-chloro-3H-imidazole-4-carbalderhyde derivatives as anti-tumor agents against ehrilch ascites tumor cells in vivo. Med Chem 3:269–276. doi: 10.2174/157340607780620699 PubMedCrossRefGoogle Scholar
  19. 19.
    Anil Kumar C, Jayarama S, Basappa, Bharathi PS, Rangappa KS (2007) Pro-apoptotic activity of imidazole derivatives mediated by up-regulation of Bax and activation of CAD in Ehrlich ascites tumor cells. Invest New Drugs 25:343–350. doi: 10.1007/s10637-006-9033-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Alonso ER, Tehrani KA, Boelens M, De Kimpe N (2005) Hydride-promoted ring expansion of 2-azaspiropyrrolinium salts: an approach towards the synthesis of nitramine. Synlett 1726–1729Google Scholar
  21. 21.
    Bucherer HT, Steiner W (1934) Syntheses of hydantoins. I. Reactions of α-hydroxy and α-amino nitriles. J Prakt Chem 140:291–316Google Scholar
  22. 22.
    Ware E (1950) The chemistry of hydantoins. Chem Rev 46:403–470. doi: 10.1021/cr60145a001 CrossRefGoogle Scholar
  23. 23.
    Wysong CL, Yokum TS, Morales GA, Gundry Rl, McLaughlin ML, Hammer RP (1996) 4-Aminopiperidine-4-carboxylic acid: cyclic A. a, a-disubstituted amino acid for preparation of water soluble highly helical peptides. J Org Chem 61:7650–7651PubMedCrossRefGoogle Scholar
  24. 24.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. S. Ananda Kumar
    • 1
  • C. V. Kavitha
    • 2
  • K. Vinaya
    • 1
  • S. B. Benaka Prasad
    • 1
  • N. R. Thimmegowda
    • 1
  • S. Chandrappa
    • 1
  • Sathees C. Raghavan
    • 2
    Email author
  • K. S. Rangappa
    • 1
    Email author
  1. 1.Department of Studies in ChemistryUniversity of MysoreMysoreIndia
  2. 2.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations