Investigational New Drugs

, Volume 27, Issue 4, pp 297–303 | Cite as

Is transketolase like 1 a target for the treatment of differentiated thyroid carcinoma? A study on thyroid cancer cell lines

  • Eleonore Fröhlich
  • Inge Fink
  • Richard WahlEmail author


Radioactive iodine-refractory [18F] fluorodeoxy-glucose-positron emission tomography-positive thyroid carcinomas represent especially aggressive tumors. Targeting glucose metabolism by the transketolase isoenzyme transketolase like 1 (TKTL-1) which is over-expressed in various neoplasms, may be effective. The correlation of TKTL-1 expression and the response to oxythiamine as the currently best-characterized inhibitor of transketolases was studied in differentiated thyroid cancer cell lines. We determined TKTL-1 expression, proliferation, glucose uptake and GLUT-1 expression in non-treated thyroid cells and recorded the effect of oxythiamine on iodide uptake and on thymidine uptake. TKTL 1 was highest expressed in cell lines derived from more invasive tumors but the expression level was not strongly correlated to proliferation rate, to GLUT-1 expression or to the response to oxythiamine. Oxythiamine showed only a weak effect in the TKTL-1 expressing cell lines. Over-expression of TKTL-1 is not an indicator for responsiveness to oxythiamine. More specific inhibitors should be tested.


Thyroid carcinoma Transketolase like 1 Glucose metabolism Glucose transporter Oxythiamine 



The excellent technical help of Mrs Elke Maier is gratefully acknowledged.


  1. 1.
    Pacini F (2008) Where Do We Stand with Targeted Therapy of Refractory Thyroid Cancer?-Utility of RECIST Criteria. Thyroid 18:279–280. doi: 10.1089/thy.2008.0038 PubMedCrossRefGoogle Scholar
  2. 2.
    Rivera M, Ghossein RA, Schoder H et al (2008) Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer 113(1):48–56PubMedCrossRefGoogle Scholar
  3. 3.
    Langbein S, Zerilli M, Zur Hausen A et al (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94:578–585. doi: 10.1038/sj.bjc.6602962 PubMedCrossRefGoogle Scholar
  4. 4.
    Volker HU, Scheich M, Schmausser B et al (2007) Overexpression of transketolase TKTL1 is associated with shorter survival in laryngeal squamous cell carcinomas. Eur Arch Otorhinolaryngol 264:1431–1436. doi: 10.1007/s00405-007-0394-x PubMedCrossRefGoogle Scholar
  5. 5.
    Foldi M, Stickeler E, Bau L et al (2007) Transketolase protein TKTL1 overexpression: A potential biomarker and therapeutic target in breast cancer. Oncol Rep 17:841–845PubMedGoogle Scholar
  6. 6.
    Zhang S, Yang JH, Guo CK et al (2007) Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett 253:108–114. doi: 10.1016/j.canlet.2007.01.010 PubMedCrossRefGoogle Scholar
  7. 7.
    Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000. Eur J Nucl Med 28:1707–1723. doi: 10.1007/s002590100626 PubMedCrossRefGoogle Scholar
  8. 8.
    Nelson D, Cox M (2004) Lehninger: Principles of Biochemistry, 4th edn. Freeman, New YorkGoogle Scholar
  9. 9.
    Singh D, Banerji AK, Dwarakanath BS et al (2005) Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 181:507–514. doi: 10.1007/s00066-005-1320-z PubMedCrossRefGoogle Scholar
  10. 10.
    Herrera MF, Hay ID, Wu PS et al (1992) Hurthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World J Surg 16:669–674 discussion 774–665 doi: 10.1007/BF02067351 PubMedCrossRefGoogle Scholar
  11. 11.
    Wahl R, Brossart P, Eizenberger D et al (1992) Direct effects of protirelin (TRH) on cultured porcine thyrocytes. J Endocrinol Invest 15:345–351PubMedGoogle Scholar
  12. 12.
    Hu LH, Yang JH, Zhang DT et al (2007) The TKTL1 gene influences total transketolase activity and cell proliferation in human colon cancer LoVo cells. Anticancer Drugs 18:427–433. doi: 10.1097/CAD.0b013e328013d99e PubMedCrossRefGoogle Scholar
  13. 13.
    Marchesi M, Biffoni M, Biancari F et al (2003) Predictors of outcome for patients with differentiated and aggressive thyroid carcinoma. Eur J Surg Suppl 588:46–50PubMedGoogle Scholar
  14. 14.
    Savagner F, Franc B, Guyetant S et al (2001) Defective mitochondrial ATP synthesis in oxyphilic thyroid tumors. J Clin Endocrinol Metab 86:4920–4925. doi: 10.1210/jc.86.10.4920 PubMedCrossRefGoogle Scholar
  15. 15.
    Langbein S, Frederiks WM, zur Hausen A et al (2008) Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer. Int J Cancer 122:2422–2428. doi: 10.1002/ijc.23403 PubMedCrossRefGoogle Scholar
  16. 16.
    Evans A, Bates V, Troy H et al (2008) Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Cancer Chemother Pharmacol 61:377–393. doi: 10.1007/s00280-007-0480-1 PubMedCrossRefGoogle Scholar
  17. 17.
    Pelicano H, Martin DS, Xu RH et al (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646. doi: 10.1038/sj.onc.1209597 PubMedCrossRefGoogle Scholar
  18. 18.
    Nagamatsu S, Nakamichi Y, Inoue N et al (1996) Rat C6 glioma cell growth is related to glucose transport and metabolism. Biochem J 319(Pt 2):477–482PubMedGoogle Scholar
  19. 19.
    Smith TA, Titley JC, McCready VR (1998) Proliferation is associated with 2-deoxy-D-[1-3H]glucose uptake by T47D breast tumour and SW480 and SW620 colonic tumour cells. Nucl Med Biol 25:481–485. doi: 10.1016/S0969-8051(98)00014-6 PubMedCrossRefGoogle Scholar
  20. 20.
    Higashi K, Clavo AC, Wahl RL (1993) Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34:414–419PubMedGoogle Scholar
  21. 21.
    Effert P, Beniers AJ, Tamimi Y et al (2004) Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res 24:3057–3063PubMedGoogle Scholar
  22. 22.
    Rastogi S, Banerjee S, Chellappan S et al (2007) Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines. Cancer Lett 257:244–251. doi: 10.1016/j.canlet.2007.07.021 PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada K, Brink I, Bisse E et al (2005) Factors influencing [F-18] 2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. J Dermatol 32:316–334PubMedGoogle Scholar
  24. 24.
    Kurokawa T, Yoshida Y, Kawahara K et al (2004) Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer 109:926–932. doi: 10.1002/ijc.20057 PubMedCrossRefGoogle Scholar
  25. 25.
    Boros LG, Brandes JL, Yusuf FI et al (1998) Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action. Med Hypotheses 50:501–506. doi: 10.1016/S0306-9877(98)90271-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Rais B, Comin B, Puigjaner J et al (1999) Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich’s tumor cells through inhibition of the pentose cycle. FEBS Lett 456:113–118. doi: 10.1016/S0014-5793(99)00924-2 PubMedCrossRefGoogle Scholar
  27. 27.
    Strumilo SA, Senkevich SB, Vinogradov VV (1984) Effect of oxythiamine on adrenal thiamine pyrophosphate-dependent enzyme activities. Biomed Biochim Acta 43:159–163PubMedGoogle Scholar
  28. 28.
    Brin M (1962) Effects of thiamine deficiency and of oxythiamine on rat tissue transketolase. J Nutr 78:179–183PubMedGoogle Scholar
  29. 29.
    Coy JF, Dressler D, Wilde J et al (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab (Zaragoza) 51:257–273Google Scholar
  30. 30.
    Strumilo SA, Senkevich SB, Galitskii EA et al (1983) Enzyme activity of thiamine pyrophosphate in the rat after oxythiamine administration. Biull Eksp Biol Med 96:42–44PubMedGoogle Scholar
  31. 31.
    Le Huerou Y, Gunawardana I, Thomas AA et al (2008) Prodrug thiamine analogs as inhibitors of the enzyme transketolase. Bioorg Med Chem Lett 18:505–508. doi: 10.1016/j.bmcl.2007.11.100 PubMedCrossRefGoogle Scholar
  32. 32.
    Shreve DS, Holloway MP, Haggerty JC 3rd et al (1983) The catalytic mechanism of transketolase. Thiamin pyrophosphate-derived transition states for transketolase and pyruvate dehydrogenase are not identical. J Biol Chem 258:12405–12408PubMedGoogle Scholar
  33. 33.
    Coy JF, Dubel S, Kioschis P et al (1996) Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Genomics 32:309–316. doi: 10.1006/geno.1996.0124 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal MedicineUniversity of TuebingenTuebingenGermany
  2. 2.Department IV, Internal MedicineUniversity of TuebingenTuebingenGermany

Personalised recommendations