Investigational New Drugs

, Volume 27, Issue 2, pp 124–130 | Cite as

In vitro cytotoxic activity of tri-n-butyltin(IV)lupinylsulfide hydrogen fumarate (IST-FS 35) and preliminary antitumor activity in vivo

  • Angela AlamaEmail author
  • Maurizio Viale
  • Michele Cilli
  • Cristina Bruzzo
  • Federica Novelli
  • Bruno Tasso
  • Fabio Sparatore


The cytotoxicity in vitro and antitumor activity in vivo of the organotin compound tri-n-butyltin(IV)lupinylsulfide hydrogen fumarate (IST-FS 35) have been investigated. The IC50 values obtained in a panel of tumor cell lines were compared to those of the parental compound IST-FS 29 in the same cells. IST-FS 35 resulted significantly more active than IST-FS 29 with IC50 values in the range 0.16–1.8 μM. Toxicity studies in vivo, after intravenous administration of escalating concentrations of IST-FS 35, provided the identification of the maximal tolerated dose (3.5 mg/kg) which was employed as therapeutic dose in the antitumor activity experiments. Preliminary results, in transplanted murine tumor models, revealed that both the P388 myelomonocytic leukaemia and the B16-F10 melanoma, implanted subcutaneously in BDF1 mice, were inhibited about 96% in their tumor volume at day 11, following a single intravenous injection of the compound. Additional studies are mandatory to unravel the mechanism of action for the development of IST-FS 35 as potential antitumor drug.


Organotin Cytotoxicity Antitumor activity Murine tumors In vivo 


  1. 1.
    Keppler BK, Berger MR, Klenner T, Heim ME (1990) Metal complexes as antitumor agents. Adv Drug Res 19:243–310Google Scholar
  2. 2.
    Respondek J, Engel J (1996) Organometallics in medicine. Drugs Future 21:391–408Google Scholar
  3. 3.
    Louie AY, Meade TJ (1999) Metal complexes as enzyme inhibitors. Chem Rev 99:2711–2734, doi: 10.1021/cr9804285 PubMedCrossRefGoogle Scholar
  4. 4.
    Ho YP, Au-Yeung SCF, To KKW (2003) Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med Res Rev 23:633–655, doi: 10.1002/med.10038 PubMedCrossRefGoogle Scholar
  5. 5.
    Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of antitumor metallodrugs with serum protein: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248, doi: 10.1021/cr040704h PubMedCrossRefGoogle Scholar
  6. 6.
    Amtmann E, Zöller M, Wesch H, Schilling G (2001) Antitumoral activity of a sulfur-containing platinum complex with an acidic pH optimum. Cancer Chemother Pharmacol 47:461–466, doi: 10.1007/s002800000261 PubMedCrossRefGoogle Scholar
  7. 7.
    Friebolin W, Schilling G, Zöller M, Amtmann E (2004) Synthesis and structure–activity relationship of novel antitumoral platinum xanthate complexes. J Med Chem 47:2256–2263, doi: 10.1021/jm0309405 PubMedCrossRefGoogle Scholar
  8. 8.
    Ang WH, Khalaila I, Allardyce CS, Juillerat-Jeanneret LP, Dyson J (2005) Rational design of platinum (IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J Am Chem Soc 127:1382–1383, doi: 10.1021/ja0432618 PubMedCrossRefGoogle Scholar
  9. 9.
    Hall MD, Mellor HR, Callaghan R, Hambley TW (2007) Basis for design and development of platinum (IV) anticancer complex. J Med Chem 50:3403–3411, doi: 10.1021/jm070280u PubMedCrossRefGoogle Scholar
  10. 10.
    Friebolin W, Schilling G, Zöller M, Amtmann E (2005) Antitumoral activity of non-platinum xanthate complexes. J Med Chem 48:7925–7931, doi: 10.1021/jm040899l PubMedCrossRefGoogle Scholar
  11. 11.
    Cagnoli M, Alama A, Barbieri F, Novelli F, Bruzzo C, Sparatore F (1998) Synthesis and biological activity of gold and tin compounds in ovarian cancer cells. Anticancer Drugs 9:603–610, doi: 10.1097/00001813-199808000-00005 PubMedCrossRefGoogle Scholar
  12. 12.
    Barbieri F, Viale M, Sparatore F, Favre A, Cagnoli M, Bruzzo C et al (2000) Cytotoxicity in vitro and preliminary antitumor activity in vivo of a novel organotin compound. Anticancer Res 20:977–980PubMedGoogle Scholar
  13. 13.
    Barbieri F, Sparatore F, Cagnoli M, Bruzzo C, Novelli F, Alama A (2001) Antiproliferative, activity and interactions with cell-cycle related proteins of organotin compound triethyltin(IV)lupinylsulfide hydrochloride. Chem Biol Interact 134:27–39, doi: 10.1016/S0009-2797(00)00249-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Barbieri F, Sparatore F, Bonavia R, Bruzzo C, Schettini G, Alama A (2002) Chemosensitivity of glioblastoma cells during treatment with the organo-tin compound triethyltin(IV)lupinyl sulfide hydrochloride. J Neurooncol 60:109–116, doi: 10.1023/A:1020630214549 PubMedCrossRefGoogle Scholar
  15. 15.
    Barbieri F, Viale M, Sparatore F, Schettini G, Favre A, Bruzzo C et al (2002) Antitumor activity of a new orally active organotin compound: a preliminare study in murine tumor models. Anticancer Drugs 13:599–604, doi: 10.1097/00001813-200207000-00006 PubMedCrossRefGoogle Scholar
  16. 16.
    Penninks AH, Bol-Schoenmakers M, Seinen W (1990) Cellular interactions of organo-tin compounds in relation to their antitumor activity. In: Gielen M (ed) Tin-based antitumor drugs. Sringer-Verlag, Berlin Heidelberg, pp 169–190Google Scholar
  17. 17.
    Cardarelli NF, Quitter BM, Allen A, Dobbins E, Libby EP, Hager P et al (1984) Organo-tin implications in anticarcinogenesis. Background and thymus involvement. Aust J Exp Biol Med Sci 62:199–208, doi: 10.1038/icb.1984.20 PubMedCrossRefGoogle Scholar
  18. 18.
    de Vos D, Willem R, Gielen M, van Wingerden KE, Nooter K (1998) The development of novel organotin anti-tumor drugs: structure and activity. Metal-Based Drugs 5:179–188, doi: 10.1155/MBD.1998.179 PubMedCrossRefGoogle Scholar
  19. 19.
    Gielen M, Biesemans M, de Vos D, Willem R (2000) Synthesis, characterization and in vitro antitumor activity of di- and tri-organotin derivatives of polyoxa- and biologically relevant carboxylic acids. J Inorg Biochem 79:139–145, doi: 10.1016/S0162-0134(99)00161-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Gitlitz MH, Moran MK (1983) Tin compounds. In: Kirk–Othmer Encyclopedia of Chemical Technology. J Wiley Sons N Y 23:42–77Google Scholar
  21. 21.
    Novelli F, Recine M, Sparatore F, Juliano C (1999) Triorganotin compounds as antimicrobial agents. Farmaco 54:237–241, doi: 10.1016/S0014-827X(99)00020-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Stridh H, Orrenius S, Hampton MB (1999) Caspase involvement in the induction of apoptosis by the environmental toxicants tributyltin and triphenyltin. Toxicol Appl Pharmacol 156:141–146, doi: 10.1006/taap.1999.8633 PubMedCrossRefGoogle Scholar
  23. 23.
    Aw TY, Nicotera P, Manzo L, Orrenius S (1990) Tributyltin stimulates apoptosis in rat thymocytes. Arch Biochem Biophys 283:46–50, doi: 10.1016/0003-9861(90)90610-B PubMedCrossRefGoogle Scholar
  24. 24.
    Viviani B, Rossi AD, Chow SC, Nicotera P (1996) Triethyltin interferes with Ca2+ signaling and potentiates norepinephrine release in PC12 cells. Toxicol Appl Pharmacol 140:289–295, doi: 10.1006/taap.1996.0224 PubMedCrossRefGoogle Scholar
  25. 25.
    Liu HG, Wang Y, Lian L, Xu LH (2006) Tributyltin induces DNA damage as well as oxidative damage in rats. Environ Toxicol 21:166–171, doi: 10.1002/tox.20170 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Angela Alama
    • 1
    Email author
  • Maurizio Viale
    • 2
  • Michele Cilli
    • 3
  • Cristina Bruzzo
    • 1
  • Federica Novelli
    • 4
  • Bruno Tasso
    • 4
  • Fabio Sparatore
    • 4
  1. 1.Tumor Genetic, Lung Cancer UnitNational Institute for Cancer ResearchGenoaItaly
  2. 2.Immunological TherapyNational Institute for Cancer ResearchGenoaItaly
  3. 3.Animal FacilityNational Institute for Cancer ResearchGenoaItaly
  4. 4.Department of Pharmaceutical SciencesUniversity of GenoaGenoaItaly

Personalised recommendations