Advertisement

Investigational New Drugs

, Volume 26, Issue 6, pp 517–524 | Cite as

CPT21, a novel compound with anti-proliferative effect against gastric cancer cell SGC7901

  • Bo Zhang
  • Yu Luo
  • Qinjie Weng
  • Qiaojun HeEmail author
  • Wei LuEmail author
  • Bo YangEmail author
PRECLINICAL STUDIES

Summary

7-[(3-piperidyl)-1-propinyl]-camptothecin (CPT21) is a novel semi-synthetic water-soluble analogue of camptothecin. In this context, we assessed the anti-tumor activity of CPT21 both in vivo and in vitro and explored its molecular mechanism. We found that CPT21 presented a broad anti-tumor spectrum against ten cancer cell lines in vitro, and the IC50 values ranged from 0.1 to 12.0 μM. CPT21 was also capable to interrupt the DNA topoisemerase I activity and caused DNA double strand breaks during DNA replication. Proportion of apoptotic SGC7901 cells induced by CPT21 showed a time- and concentration-dependent increase accompanied with the decrease in mitochondria membrane potential (ΔΨm). We also observed that CPT21 up-regulated the protein expression of p53, phospho-p53, p21, BAX, phospho-c-Jun NH2-terminal protein kinase (JNK), meanwhile down-regulating the protein expression of Bcl-2, procaspase-9, XIAP, and phospho-ERK1/2. In the study of SGC7901 xenograft model, the results suggested that both 5.0 mg/kg and 10.0 mg/kg CPT21 achieved high anti-tumor activity, and the tumor inhibition rates were 42.5% and 75.1% respectively. Taken together, our study demonstrates that CPT21 displays an extensive anti-tumor spectrum and CPT21 can induce the apoptosis of SGC7901 cells via activating the caspases cascade followed by disrupting mitochondrion function.

Keywords

Camptothecin Gastric cancer Apoptosis Xenograft 

Notes

Acknowledgements

This study receives financial support from Health Bureau of Zhejiang Province Foundation (No.WKJ2006-2-015) and is sponsored by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents.

References

  1. 1.
    Huang M, Gao H, Chen Y, Zhu H, Cai Y, Zhang X, Miao Z, Jiang H, Zhang J, Shen H, Lin L, Lu W, Ding J (2007) Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res 13:1298–1307PubMedCrossRefGoogle Scholar
  2. 2.
    Song MG, Gao SM, Du KM, Xu M, Yu Y, Zhou YH, Wang Q, Chen Z, Zhu YS, Chen GQ (2005) Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase Cdelta-dependent mechanisms. Blood 105:3714–3721PubMedCrossRefGoogle Scholar
  3. 3.
    Lesueur-Ginot L, Demarquay D, Kiss R, Kasprzyk PG, Dassonneville L, Bailly C, Camara J, Lavergne O, Bigg DC (1999) Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase I-targeted activity and antitumor properties. Cancer Res 59:2939–2943PubMedGoogle Scholar
  4. 4.
    Cesare MD, Pratesi G, Perego P, Carenini N, Tinell S, Merlini L, Penco S (2001) Potent antitumor activity and improved pharmacological profile of ST1481, a novel 7-substituted camptothecin. Cancer Res 61:7189–7195PubMedGoogle Scholar
  5. 5.
    Takimoto CH, Wright J, Arbuck SG (1998) Clinical applications of the camptothecins. Biochim Biophys Acta 1400:107–119PubMedGoogle Scholar
  6. 6.
    Stewart CF, Leggas M, Schuetz JD, Panetta JC, Cheshire PJ, Peterson J, Daw N, Jenkins JJ 3rd, Gilbertson R, Germain GS, Harwood FC, Houghton PJ (2004) Gefitinib enhances the antitumor activity and oral bioavailability of Irinotecan in mice. Cancer Res 64:7491–7499PubMedCrossRefGoogle Scholar
  7. 7.
    Yang B, Reynolds CP (2005) Tirapazamine cytotoxicity for neuroblastoma is p53 dependent. Clin Cancer Res 11:2774–2780PubMedCrossRefGoogle Scholar
  8. 8.
    Lesueur-Ginot L, Demarquay D, Kiss R, Kasprzyk PG, Dassonneville L, Bailly C, Camara J, Lavergne O, Bigg DC (1999) Homocamptothecin, an E-ring modified camptothecin with enhanced lactone stability, retains topoisomerase i-targeted activity and antitumor properties. Cancer Res 59:2939–2943PubMedGoogle Scholar
  9. 9.
    Petrangolini G, Pratesi G, De Cesare M, Supino R, Pisano C, Marcellini M, Giordano V, Laccabue D, Lanzi C, Zunino F (2003) Antiangiogenic effects of the novel camptothecin ST1481 (gimatecan) in human tumor xenografts. Mol Cancer Res 1:863–870PubMedGoogle Scholar
  10. 10.
    Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–692PubMedCrossRefGoogle Scholar
  11. 11.
    Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440PubMedCrossRefGoogle Scholar
  12. 12.
    Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413PubMedCrossRefGoogle Scholar
  13. 13.
    Pourquier P, Pommier Y (2001) Topoisomerase I-mediated DNA damage. Adv Cancer Res 80:189–216PubMedCrossRefGoogle Scholar
  14. 14.
    Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922:1–10PubMedCrossRefGoogle Scholar
  15. 15.
    Hayon IL, Haupt Y (2002) p53: an internal investigation. Cell Cycle 1:111–116PubMedGoogle Scholar
  16. 16.
    Liu JY, Yin SP, Reddy N, Spencer C, Sheng S (2004) Bax mediates the apoptosis-sensitizing effect of maspin. Cancer Res 64:1703–1711PubMedCrossRefGoogle Scholar
  17. 17.
    Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4PubMedCrossRefGoogle Scholar
  18. 18.
    Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature (Lond.) 387:773–776CrossRefGoogle Scholar
  19. 19.
    Manero F, Gautier F, Gallenne T, Cauquil N, Grée D, Cartron PF, Geneste O, Grée R, Vallette FM, Juin P (2006) The small organic compound HA14-1 prevents Bcl-2 interaction with bax to sensitize malignant glioma cells to induction of cell death. Cancer Res 66:2757–2764PubMedCrossRefGoogle Scholar
  20. 20.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  21. 21.
    Shen WH, Wang J, Wu JJ, Zhurkin VB, Yin YX (2006) Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res 66:6033–6039PubMedCrossRefGoogle Scholar
  22. 22.
    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874PubMedCrossRefGoogle Scholar
  23. 23.
    Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 64:2134–2142PubMedCrossRefGoogle Scholar
  24. 24.
    Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle RJ, Morrison RS (2000) p38 MAP kinase mediates bax translocation in nitric oxide induced apoptosis in neurons. J Cell Biol 150:335–347PubMedCrossRefGoogle Scholar
  25. 25.
    Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E (2000) Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506–4514PubMedGoogle Scholar
  26. 26.
    Roulston A, Reinhard C, Amiri P, Williams LT (1998) Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem 273:10232–10239PubMedCrossRefGoogle Scholar
  27. 27.
    Yang YL, Li XM (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10:169–177PubMedCrossRefGoogle Scholar
  28. 28.
    Cummins JM, Kohli M, Rago C, Kinzler KW, Vogelstein B, Bunz F (2004) X-linked inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 64:3006–3008PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
  2. 2.Institute of Medicinal Chemistry, Department of ChemistryEast China Normal UniversityShanghaiChina

Personalised recommendations