Skip to main content

Advertisement

Log in

Murine leukemia P388 vinorelbine-resistant cell lines are sensitive to vinflunine

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The work presented here was initiated to explore the mechanisms underlying vinorelbine resistance in two previously established murine leukemia P388 cell lines (N.63 and N2.5). IC50 measurements demonstrated that the vinorelbine-resistant cell line N.63 was sensitive to both vinblastine and vinflunine. In addition, vinorelbine-resistant cell line N2.5 retained sensitivity to vinflunine. We used flow cytometry with propidium iodide to measure G2/M arrest in response to drug treatment. Annexin V labeling was used as a marker of apoptosis and JC-1 dye labeling as a marker of mitochondrial membrane depolarization to explore differential responses that might help explain the absence of cross resistance to vinflunine. At equipotent (10X IC50) doses, after 8 h of drug treatment, vinflunine induced G2/M arrest in a significantly larger fraction of vinorelbine- resistant cells compared to vinorelbine. At the same drug doses, at 16 h after initiation of drug treatment, vinflunine induced a statistically significant greater apoptotic response and mitochondrial depolarization. The mitochondrial depolarization at 16 h was confirmed by Western blotting that showed release of cytochrome c. Comparison of apoptotic and mitochondrial depolarization responses in vinorelbine-resistant cells upon exposure to vinorelbine, vinblastine and vinflunine demonstrated the following pattern of drug activity: vinflunine > vinblastine > vinorelbine, confirming the importance of a antimitotic-induced mitochondria-mediated pathways in these P388 cell lines. We conclude that vinflunine may be preferred for treatment of specific cancers compared to other vinca alkaloids due to its enhanced effects on apoptotic pathways that follow G2/M arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

VLB:

vinblastine

VRB:

vinorelbine

VFL:

vinflunine

MDR:

Multi Drug Resistance

FITC:

fluorescein isothiocyanate

PI:

propidium iodide

Pgp:

p-glycoprotein

FACS:

fluorescence activated cell sorting

MAP:

microtubule associated protein

OP-18:

oncoprotein-18

qRT-PCR:

quantitative real-time polymerase chain reaction

References

  1. Bhattacharya R, Cabral F (2004) A ubiquitous beta-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 15:3123–3131

    Article  PubMed  CAS  Google Scholar 

  2. Blade K, Menick DR, Cabral F (1999) Overexpression of class I, II or IVb beta-tubulin isotypes in CHO cells is insufficient to confer resistance to Paclitaxel. J Cell Sci 112(13):2213–2221

    PubMed  CAS  Google Scholar 

  3. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  4. Bosch I, Croop J (1996) P-Glycoprotein multidrug resistance and cancer. Biochim Biophys Acta 1288:F37–F54

    PubMed  Google Scholar 

  5. Caceres A, Binder LI, Payne MR, Bender P, Rebhun L, Steward O (1984) Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J Neurosci 4:394–410

    PubMed  CAS  Google Scholar 

  6. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  PubMed  CAS  Google Scholar 

  7. Dumontet C, Jaffrezou JP, Tsuchiya E, Duran GE, Chen G, Derry WB, Wilson L, Jordan MA, Sikic BI (2004) Resistance to microtubule-targeted cytotoxins in a K562 leukemia cell variant associated with altered tubulin expression and polymerization. Bull Cancer 91:E81–E112

    Article  PubMed  Google Scholar 

  8. Etievant C, Barret JM, Kruczynski A, Perrin D, Hill BT (1998) Vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine), a novel vinca alkaloid, which participates in P-glycoprotein (Pgp)-mediated multidrug resistance in vivo and in vitro. Invest New Drugs 16:3–17

    Article  PubMed  CAS  Google Scholar 

  9. Etievant C, Kruczynski A, Barret JM, Tait AS, Kavallaris M, Hill BT (2001) Markedly diminished drug resistance-inducing properties of vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine) relative to vinorelbine, identified in murine and human tumour cells in vivo and in vitro. Cancer Chemother Pharmacol 48:62–70

    Article  PubMed  CAS  Google Scholar 

  10. Fabbri F, Carloni S, Brigliadori G, Zoli W, Lapalombella R, Marini M (2006) Sequential events of apoptosis involving docetaxel, a microtubule-interfering agent: a cytometric study. BMC Cell Biol 7:6

    Article  PubMed  CAS  Google Scholar 

  11. Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435:519–522

    Article  PubMed  CAS  Google Scholar 

  12. Hari M, Yang H, Zeng C, Canizales M, Cabral F (2003) Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskelet 56:45–56

    Article  CAS  Google Scholar 

  13. Hill BT (2001) Vinflunine, a second generation novel vinca alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. Curr Pharm Des 7:1199–1212

    Article  PubMed  CAS  Google Scholar 

  14. Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ, Lobert S (2006) Comparison of beta-tubulin MRNA and protein levels in 12 human cancer cell lines. Cell Motil Cytoskelet 63:41–52

    Article  CAS  Google Scholar 

  15. Jacquesy J, Fahy J (2000) Cancer: superacid generation of new antitumor agents. In: Torrence PF (ed) Biomedical chemistry: applying chemical principles to the understanding and treatment of disease. Wiley, New York, pp 227–245

    Google Scholar 

  16. Kruczynski A, Barret JM, Etievant C, Colpaert F, Fahy J, Hill BT (1998) Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated vinca alkaloid. Biochem Pharmacol 55:635–648

    Article  PubMed  CAS  Google Scholar 

  17. Kruczynski A, Hill BT (2001) Vinflunine, the latest vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit Rev Oncol Hematol 40:159–173

    Article  PubMed  CAS  Google Scholar 

  18. Kruczynski A, Etievant C, Perrin D, Chansard N, Duflos A, Hill BT (2002) Characterization of cell death induced by vinflunine, the most recent vinca alkaloid in clinical development. Br J Cancer 86:143–150

    Article  PubMed  CAS  Google Scholar 

  19. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskelet 17:118–132

    Article  CAS  Google Scholar 

  20. Lobert S, Correia JJ (2000) Energetics of vinca alkaloid interactions with tubulin. Methods Enzymol 323:77–103

    Article  PubMed  CAS  Google Scholar 

  21. Lobert S, Frankfurter A, Correia JJ (1995) Binding of vinblastine to phosphocellulose-purified and alpha beta-class III tubulin: the role of nucleotides and beta-tubulin isotypes. Biochemistry 34:8050–8060

    Article  PubMed  CAS  Google Scholar 

  22. Lobert S, Frankfurter A, Correia JJ (1998) Energetics of vinca alkaloid interactions with tubulin isotypes: implications for drug efficacy and toxicity. Cell Motil Cytoskelet 39:107–121

    Article  CAS  Google Scholar 

  23. Lobert S, Ingram JW, Hill BT, Correia JJ (1998) A Comparison of thermodynamic parameters for vinorelbine- and vinflunine-induced tubulin self-association by sedimentation velocity. Mol Pharmacol 53:908–915

    PubMed  CAS  Google Scholar 

  24. Lobert S, Fahy J, Hill BT, Duflos A, Etievant C, Correia JJ (2000) Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry 39:12053–12062

    Article  PubMed  CAS  Google Scholar 

  25. Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T (2003) Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol 163:1109–1116

    PubMed  CAS  Google Scholar 

  26. Minderman H, Vanhoefer U, Toth K, Yin MB, Minderman MD, Wrzosek C, Slovak ML, Rustum YM (1996) DiOC2(3) is not a substrate for multidrug resistance protein (MRP)-mediated drug efflux. Cytometry 25:14–20

    Article  PubMed  CAS  Google Scholar 

  27. Minotti AM, Barlow SB, Cabral F (1991) Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 266:3987–3994

    PubMed  CAS  Google Scholar 

  28. Ngan VK, Bellman K, Hill BT, Wilson L, Jordan MA (2001) Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 60:225–232

    PubMed  CAS  Google Scholar 

  29. Noble RL (1990) The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    Article  PubMed  CAS  Google Scholar 

  30. Pourroy B, Carre M, Honore S, Bourgarel-Rey V, Kruczynski A, Briand C, Braguer D (2004) Low concentrations of vinflunine induce apoptosis in human SK-N-SH neuroblastoma cells through a postmitotic G1 arrest and a mitochondrial pathway. Mol Pharmacol 66:580–591

    PubMed  CAS  Google Scholar 

  31. Roach MC, Boucher VL, Walss C, Ravdin PM, Luduena RF (1998) Preparation of a monoclonal antibody specific for the class I isotype of beta-tubulin: the beta isotypes of tubulin differ in their cellular distributions within human tissues. Cell Motil Cytoskelet 39:273–285

    Article  CAS  Google Scholar 

  32. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP (2000) Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 475:267–272

    Article  PubMed  CAS  Google Scholar 

  33. Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA 83:4327–4331

    Article  PubMed  CAS  Google Scholar 

  34. Taylor SS, McKeon F (1997) Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89:727–735

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Cabral F (2005) Paclitaxel resistance in cells with reduced beta-tubulin. Biochim Biophys Acta 1744:245–255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Lobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, A., Kruczynski, A., Frankfurter, A. et al. Murine leukemia P388 vinorelbine-resistant cell lines are sensitive to vinflunine. Invest New Drugs 26, 319–330 (2008). https://doi.org/10.1007/s10637-007-9102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9102-3

Keywords

Navigation