Skip to main content

Advertisement

Log in

The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Objective: The dipeptide J1 acts as a prodrug of melphalan with a significant increased potency in vitro resulting from activation by cellular aminopeptidases. The current study was performed to evaluate the ex vivo profile of J1 using 176 primary tumor cell cultures from patients. In addition, the activity of J1 in combination with eight standard drugs, representing different mechanistic classes, was studied in nine different human tumor cell lines of different histopathological origin. Methods: Ex vivo evaluation of tumor type selectivity, was performed using the established fluorometric microculture cytotoxicity assay (FMCA). Combinations between J1 and eight standard chemotherapeutic drugs were analyzed using the median-effect method. Results: The prodrug J1 expressed approximately 50- to 100-fold higher potency but similar activity profile as that of its metabolite, melphalan. The difference was greater in some diagnoses (e.g. breast cancer, NHL and AML), and exceptionally high in some breast cancer samples with aggressive phenotypes. Combination analysis of J1 and standard chemotherapeutics yielded several potentially additive and synergistic interactions, most striking for etoposide with significant synergism in all studied cell lines. Conclusions: In conclusion, the ex vivo profile suggests that further evaluation of J1 as the alkylating agent in for example aggressive breast cancer might be of particular interest, preferentially in combination with DNA-topoisomerase II inhibitors like etoposide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Furner RL, Brown RK (1980) L-phenylalanine mustard (L-PAM): the first 25 years. Cancer Treat Rep 64:559–74

    PubMed  CAS  Google Scholar 

  2. Teicher BA (1997) (405–418) Antitumor alkylating agents. In: De Vita Hellman Rodenberg VTSSA (ed) Cancer principals and practice of oncology. Lippincott-Raven, Philadelphia, USA

    Google Scholar 

  3. Jones RB (2002) Clinical pharmacology of melphalan and its implications for clinical resistance to anticancer agents. Cancer Treat Res 112:305–322

    PubMed  CAS  Google Scholar 

  4. Donato ML, Gershenson DM, Wharton JT, Ippoliti CM, Aleman AS, Bodurka-Bevers D, Bevers MW, Burke TW, Levenback CF, Wolf JK, Freedman RS, Bast RC Jr, Gajewski JL, Champlin RE (2001) High-dose topotecan, melphalan, and cyclophosphamide (TMC) with stem cell support: a new regimen for the treatment of advanced ovarian cancer. Gynecol Oncol 82:420–426

    Article  PubMed  CAS  Google Scholar 

  5. Demirer T, Uysal VA, Ayli M, Genc Y, Ilhan O, Koc H, Dagli M, Arat M, Gunel N, Fen T, Dincer S, Ustael N, Yildiz M, Ustun T, Seyrek E, Ozet G, Muftuoglu O, Akan H (2003) High-dose thiotepa, melphalan and carboplatin (TMCb) followed by autologous stem cell transplantation in patients with advanced breast cancer: a retrospective evaluation. Bone Marrow Transplant 31:755–761

    Article  PubMed  CAS  Google Scholar 

  6. Gullbo J, Dhar S, Luthman K, Ehrsson H, Lewensohn R, Nygren P, Larsson R (2003) Antitumor activity of the alkylating oligopeptides J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl ester) and P2 (L-prolyl-m-L-sarcolysyl-p-L-fluorophenylalanine ethyl ester): comparison with melphalan. Anti-cancer Drugs 14:617–624

    Article  PubMed  CAS  Google Scholar 

  7. Gullbo J, Tullberg M, Vabeno J, Ehrsson H, Lewensohn R, Nygren P, Larsson R, Luthman K (2003) Structure–activity relationship for alkylating dipeptide nitrogen mustard derivatives. Oncol Res 14:113–132

    PubMed  CAS  Google Scholar 

  8. Gullbo J, Lindhagen E, Bashir-Hassan S, Tullberg M, Ehrsson H, Lewensohn R, Nygren P, De La Torre M, Luthman K, Larsson R (2004) Antitumor efficacy and acute toxicity of the novel dipeptide melphalanyl-p-L-fluorophenylalanine ethyl ester (J1) in vivo. Invest New Drugs 22:411–420

    Article  PubMed  CAS  Google Scholar 

  9. Wickström M, Johnsen JI, Ponthan F, Segerström L, Sveinbjörnsson B, Lindskog M, Lövborg H, Viktorsson K, Lewensohn R, Kogner P, Larsson R, Gullbo J (2007) The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo. Mol Cancer Ther 6:2409–2417

    Article  PubMed  Google Scholar 

  10. Gullbo J, Wickstrom M, Tullberg M, Ehrsson H, Lewensohn R, Nygren P, Luthman K, Larsson R (2003) Activity of hydrolytic enzymes in tumour cells is a determinant for anti-tumour efficacy of the melphalan containing prodrug J1. J Drug Target 11:355–363

    Article  PubMed  CAS  Google Scholar 

  11. van Hensbergen Y, Broxterman HJ, Hanemaaijer R, Jorna AS, van Lent NA, Verheul HM, Pinedo HM, Hoekman K (2002) Soluble aminopeptidase N/CD13 in malignant and nonmalignant effusions and intratumoral fluid. Clin Cancer Res 8:3747–3754

    PubMed  Google Scholar 

  12. Suganuma T, Ino K, Shibata K, Nomura S, Kajiyama H, Kikkawa F, Tsuruoka N, Mizutani S (2004) Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor–stromal interaction and vascular endothelial growth factor. Lab Invest 84:639–648

    Article  PubMed  CAS  Google Scholar 

  13. Martinez JM, Prieto I, Ramirez MJ, Cueva C, Alba F, Ramirez M (1999) Aminopeptidase activities in breast cancer tissue. Clin Chem 45:1797–1802

    PubMed  CAS  Google Scholar 

  14. Bosanquet AG, Bell PB (2004) Ex vivo therapeutic index by drug sensitivity assay using fresh human normal and tumor cells. J Exp Ther Oncol 4:145–154

    PubMed  CAS  Google Scholar 

  15. Fridborg H, Jonsson E, Nygren P, Larsson R (1999) Relationship between diagnosis-specific activity of cytotoxic drugs in fresh human tumour cells ex vivo and in the clinic. Eur J Cancer 35:424–432

    Article  PubMed  CAS  Google Scholar 

  16. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  17. Frickhofen N, Berdel WE, Opri F, Haas R, Schneeweiss A, Sandherr M, Kuhn W, Hossfeld DK, Thomssen C, Heimpel H, Kreienberg R, Hinke A, Mobus V (2006) Phase I/II trial of multicycle high-dose chemotherapy with peripheral blood stem cell support for treatment of advanced ovarian cancer. Bone Marrow Transplant 38:493–499

    Article  PubMed  CAS  Google Scholar 

  18. Larsson R, Kristensen J, Sandberg C, Nygren P (1992) Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA). Int J Cancer 50:177–185

    Article  PubMed  CAS  Google Scholar 

  19. Csoka K, Larsson R, Tholander B, Gerdin E, de la Torre M, Nygren P (1994) Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA). Gynecol Oncol 54:163–170

    Article  PubMed  CAS  Google Scholar 

  20. Nygren P, Kristensen J, Jonsson B, Sundstrom C, Lonnerholm G, Kreuger A, Larsson R (1992) Feasibility of the fluorometric microculture cytotoxicity assay (FMCA) for cytotoxic drug sensitivity testing of tumor cells from patients with acute lymphoblastic leukemia. Leukemia 6:1121–1128

    PubMed  CAS  Google Scholar 

  21. Rickardson L, Fryknas M, Haglund C, Lovborg H, Nygren P, Gustafsson MG, Isaksson A, Larsson R (2006) Screening of an annotated compound library for drug activity in a resistant myeloma cell line. Cancer Chemother Pharmacol 58:749–758

    Article  PubMed  CAS  Google Scholar 

  22. Dixon J, Kaklamanis L, Turley H, Hickson ID, Leek RD, Harris AL, Gatter KC (1994) Expression of aminopeptidase-n (CD 13) in normal tissues and malignant neoplasms of epithelial and lymphoid origin. J Clin Pathol 47:43–47

    Article  PubMed  CAS  Google Scholar 

  23. Pulido-Cejudo G, Miranda H, El Abdaimi K, Wang C, Kar B, Medina Acevedo J, Cardenas JM, Sarti Gutierrez E, Perez Palacios G (2004) A monoclonal antibody driven biodiagnostic system for the quantitative screening of breast cancer. Biotechnol Lett 26:1335–1339

    Article  PubMed  CAS  Google Scholar 

  24. Tokuhara T, Hattori N, Ishida H, Hirai T, Higashiyama M, Kodama K, Miyake M (2006) Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin Cancer Res 12:3971–3978

    Article  PubMed  CAS  Google Scholar 

  25. Surowiak P, Drag M, Materna V, Suchocki S, Grzywa R, Spaczynski M, Dietel M, Oleksyszyn J, Zabel M, Lage H (2006) Expression of aminopeptidase N/CD13 in human ovarian cancers. Int J Gynecol Cancer 16:1783–1788

    Article  PubMed  CAS  Google Scholar 

  26. Shibata K, Kajiyama H, Mizokami Y, Ino K, Nomura S, Mizutani S, Terauchi M, Kikkawa F (2005) Placental leucine aminopeptidase (P-LAP) and glucose transporter 4 (GLUT4) expression in benign, borderline, and malignant ovarian epithelia. Gynecol Oncol 98:11–18

    Article  PubMed  CAS  Google Scholar 

  27. Yamashita M, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A, Mizutani S, Kikkawa F (2007) Involvement of aminopeptidase N in enhanced chemosensitivity to paclitaxel in ovarian carcinoma in vitro and in vivo. Int J Cancer 120:2243–2250

    Article  PubMed  CAS  Google Scholar 

  28. Ishii K, Usui S, Yamamoto H, Sugimura Y, Tatematsu M, Hirano K (2001) Decreases of metallothionein and aminopeptidase N in renal cancer tissues. J Biochem (Tokyo) 129:253–258

    CAS  Google Scholar 

  29. Varona A, Blanco L, Lopez JI, Gil J, Agirregoitia E, Irazusta J, Larrinaga G (2007) Altered levels of acid, basic, and neutral peptidase activity and expression in human clear cell renal cell carcinoma. Am J Physiol Renal Physiol 292:F780–F788

    Article  PubMed  CAS  Google Scholar 

  30. Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, Orntoft TF (2002) Gene expression in colorectal cancer. Cancer Res 62:4352–4363

    PubMed  CAS  Google Scholar 

  31. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122:376–386

    Article  PubMed  CAS  Google Scholar 

  32. Kawamura J, Shimada Y, Kitaichi H, Komoto I, Hashimoto Y, Kaganoi J, Miyake M, Yamasaki S, Kondo K, Imamura M (2007) Clinicopathological significance of aminopeptidase N/CD13 expression in human gastric carcinoma. Hepatogastroenterology 54:36–40

    PubMed  CAS  Google Scholar 

  33. Buzdar AU, Legha SS, Blumenschein GR, Hortobagyi GN, Yap HY, Schell FC, Barnes BC, Fraschini G, Bodey GP (1982) Peptichemio versus melphalan (L-PAM) in advanced breast cancer. Cancer 49:1767–1770

    Article  PubMed  CAS  Google Scholar 

  34. Kaufmann SH, Peereboom D, Buckwalter CA, Svingen PA, Grochow LB, Donehower RC, Rowinsky EK (1996) Cytotoxic effects of topotecan combined with various anticancer agents in human cancer cell lines. J Natl Cancer Inst 88:734–741

    Article  PubMed  CAS  Google Scholar 

  35. Hirota H, Gosky D, Berger NA, Chatterjee S (2002) Interference with topoisomerase IIalpha potentiates melphalan cytotoxicity. Int J Oncol 20:311–318

    PubMed  CAS  Google Scholar 

  36. Valteau-Couanet D, Vassal G, Pondarre C, Bonnay M, Benhamou E, Couanet D, Plantaz D, Hartmann O (1996) Phase I study of high-dose continuous intravenous infusion of VP-16 in combination with high-dose melphalan followed by autologous bone marrow transplantation in children with stage IV neuroblastoma. Bone Marrow Transplant 17:485–489

    PubMed  CAS  Google Scholar 

  37. Berenson JR, Yang HH, Sadler K, Jarutirasarn SG, Vescio RA, Mapes R, Purner M, Lee SP, Wilson J, Morrison B, Adams J, Schenkein D, Swift R (2006) Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 24:937–944

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Christina Leek and Lena Lenhammar are gratefully acknowledged for skilful technical assistance and handling of primary tumor samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Wickström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickström, M., Haglund, C., Lindman, H. et al. The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro . Invest New Drugs 26, 195–204 (2008). https://doi.org/10.1007/s10637-007-9092-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-007-9092-1

Keywords

Navigation