Investigational New Drugs

, Volume 25, Issue 1, pp 9–19 | Cite as

In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug

  • Esther F. A. Brandon
  • Rolf W. SparidansEmail author
  • Ronald D. van Ooijen
  • Irma Meijerman
  • Luis Lopez Lazaro
  • Ignacio Manzanares
  • Jos H. Beijnen
  • Jan H. M. Schellens


Aplidine is a potent marine anti-cancer drug and is currently being investigated in phase II clinical trials. However, the enzymes involved in the biotransformation of aplidine and thus its pharmacokinetics are not known yet.

To assess the biotransformation pathways of aplidine and their potential implications for human pharmacology and toxicology, the in vitro metabolism of aplidine was characterized using incubations with human plasma, liver preparations, cytochrome P450 (CYP) and uridine diphosphoglucuronosyl transferase (UGT) supersomes in combination with HPLC analysis and cytotoxicity assays with cell lines.

Aplidine was metabolised by carboxyl esterases in human plasma. Using CYP supersomes and liver microsomes, it was shown that aplidine was metabolised mainly by CYP3A4 and also by CYP2A6, 2E1 and 4A11. Four metabolites were observed after incubation with human liver microsomes, one formed by CYP2A6 (C-demethylation) and three by CYP3A4 (hydroxylation and/or C-dealkylation). No conjugation was observed in human liver S9 fraction. However, the aplidine metabolites formed by CYP were further conjugated by the phase II enzymes UGT, GST and SULT. In accordance with the findings in microsomes and CYP supersomes, a significant effect of specific CYP2A6, 2E1, 3A4 and 4A11 inhibitors on the cytotoxicity of aplidine in Hep G2 and IGROV-1 cells could be observed.

These results provide evidence that CYP3A4 has a major role in metabolising aplidine in vitro with additional involvement of CYP2A6, 2E1, and 4A11. Further, the metabolites formed by CYPs can be conjugated by UGT, SULT and GST. These findings could help interpret the in vivo pharmacokinetics of aplidine.


Aplidine Human biotransformation Cytochrome P450 (CYP) Phase II enzymes Human liver fractions Supersomes Human cell lines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urdiales JL, Morata P, Nunez De Castro I, Sanchez-Jimenez F (1996) Antiproloferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett 102:31–37CrossRefPubMedGoogle Scholar
  2. 2.
    Faircloth G, Hanauske A, Depenbrock H, Peter R, Crews CM, Manzanares I, Meely K, Grant W, Jimeno J (1997) Pre-clinical characterization of aplidine, a new marine anticancer depsipeptide. Proc Am Assoc Cancer Res 38:692Google Scholar
  3. 3.
    Erba E, Ronzoni S, Bergamaschi D, Bassano L, Desiderio MA, Faircloth G, Jimeno J, D'Incalci M (1999) Mechanism of antileukemic activity of aplidine. Proc Am Assoc Cancer Res 40:3Google Scholar
  4. 4.
    Broggini M, Marchini S, D'Incalci M, Faircloth GT, Jimeno J (1999) Changes in gene expression in tumor cells exposed to the two marine compounds, ET-743 and aplidine, by using cDNA microarrays. Proc Am Assoc Cancer Res 10:310Google Scholar
  5. 5.
    Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anti-Cancer Drugs 13 (suppl. 1):S15–S19PubMedGoogle Scholar
  6. 6.
    Depenbrock H, Peter R, Faircloth GT, Manzanares I, Jimeno J., Hanauske AR (1998) In vitro activity of aplidine, a new marine-derived anti-cancer compound, on freshly explanted clonogenic human tumour cells and haematopoietic precursor cells. Br J Cancer 78:739–744PubMedGoogle Scholar
  7. 7.
    Raymond E, Paz-Ares L, Izquierdo M, Belanger K, Maroun J, Bowman A, et al. (2001) Phase I trials with aplidine, a new marine derived anticancer compound. Eur J Cancer 37 (suppl. 6):S32CrossRefGoogle Scholar
  8. 8.
    Faivre S, Chieze S, Delbaldo C, Ady-Vago N, Guzman C, Lopez-Lazaro L, et al. (2005) Phase I and pharmacokinetic study of aplidine, a new marine cyclodepsipeptide in patients with advanced malignancies. J Clin Oncol 23:7871–7880.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwartsmann G, Brondani da Rocha A, Mattei J, Martins Lopez R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 12:1–17CrossRefGoogle Scholar
  10. 10.
    Brandon EFA, van Ooijen RD, Sparidans RW, López Lázaro L, Heck AJR, Beijnen JH, Schellens JHM (2005) Structure elucidation of aplidine metabolites formed in vitro by human liver microsomes using triple quadrupole mass spectrometry. J Mass Spectrom 40:821–831CrossRefPubMedGoogle Scholar
  11. 11.
    Brandon EFA, Sparidans RW, Guijt K-J, Löwenthal S, Meijerman I, Beijnen JH, Schellens JHM (2006) In vitro chracterization of the human biotransformation an CYP reaction phenotype of ET-743 (Yondelis®, Trabectedin®), a novel marine anti-cancer drug. Invest New Drugs 24:3–14Google Scholar
  12. 12.
    Higgins JD III, Neely L, Fricker S (1993) Synthesis and cytotoxicity of some cyclometallated palladium complexes. J Inorg Biochem 49:149–156CrossRefPubMedGoogle Scholar
  13. 13.
    Zucchetti M, Lopez-Lazaro L, Celli N, Cicchella B, Twelves C, Paz-Agres L, Izquirdo MA, Bowman A, Raymond E, Maroun J, Belanger K, D'Incalci M (2000) Clinical pharmacokinetics (PK) of aplidine (APL) in patients with solid tumors and non-Hodgkin lymphomas. Proc Am Assoc Cancer Res 30:4932Google Scholar
  14. 14.
    Celli N, Mariana B, Di Carlo F, Zucchetti M, Lopez-Lazaro L, D'Incalci M, Rotilio D (2004) Determination of aplidin®, a marine-derived anticancer drug, in human plasma, whole blood and urine by liquid chromatography with electrospray ionisation tandem mass spectrometric detection. J Pharmaceut Biomed Anal 34:619–630CrossRefGoogle Scholar
  15. 15.
    Sparidans RW, Kettenes-van den Bosch JJ, van Tellingen O, Nuyen B, Henrar REC, Jimeno JM, Faircloth G, Floriano P, Rinehart KL, Beijnen JH (1999) Bioanalysis of aplidine, a new marin antitumoral depsipeptide, in plasma by high performance liquid chromatography after drivatization with trans-4′-hydrazino-2-stilbazole. J Chromatogr B 729:43–53Google Scholar
  16. 16.
    Sparidans RW, Schellens JHM, López-Lázaro L, Jimeno JM, Beijnen JH (2004) Liquid chromatographic assauy for the cyclic depsipeptide aplidine, a new marine antitumor drug, in whole blood using derivatization with trans-4′-hydrazino-2-stilbazole. Biomed Chromatogr 18:16–20CrossRefPubMedGoogle Scholar
  17. 17.
    Curry SH (1974) Drug disposition and pharmaconkinetics with a consideration of pharmacological and clinical relationships. Blackwell Scientific Publications, Oxford, pp 42–48Google Scholar
  18. 18.
    Gibson GG, Skett P (1994) Introduction to drug metabolism. Blackie Academic and Professional, London, pp 1–34Google Scholar
  19. 19.
    Guengerich FP (2001) Uncommon P450-catalyzed reactions. Curr Drug Metab 2:93–115CrossRefPubMedGoogle Scholar
  20. 20.
    Gentest Cytochrome P450 database. (accessed July 2003).Google Scholar
  21. 21.
    Ikeda K, Yoshisue K, Matsushima E, Nagayama S, Kobayashi K, Tyson CA, Chiba K, Kawaguchi Y (2000) Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res 6:4409–4415PubMedGoogle Scholar
  22. 22.
    Donato MT, Jimenez N, Castell JV, Gomez-Lechon MJ (2004) Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab Dispos 32:699–706CrossRefPubMedGoogle Scholar
  23. 23.
    Yu LJ, Matias J, Scudiero DA, Hite KM, Monks A, Sausville EA, Waxman DJ (2001) P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos 29:304–312PubMedGoogle Scholar
  24. 24.
    Ko JW, Desta Z, Soukhova NV, Tracy T, Flockhart DA (2000) In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: Potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol 49:343–351PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou S, Paxton JW, Tingle MD, Kestell P (2000) Identification of the human liver cytochrome P450 isoenzyme responsible for the 6-methylhydroxylation of the novel anticancer drug 5,6-dimethylxanthenone-4-acetic acid. Drug Metab Dispos 28:1449–1456PubMedGoogle Scholar
  26. 26.
    Lasker JM, Chen WB, Wolf I, Bloswick BP, Wilson PD, Powell PK (2000) Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. J Biol Chem 275:4118–4126CrossRefPubMedGoogle Scholar
  27. 27.
    Kumar GN, Dykstra J, Roberts EM, Jayanti VK, Hickman D, Uchic J, Yao Y, Surber B, Thomas S, Granneman GR (1999) Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: a positive drug-drug interaction. Drug Metab Dispos 27:902–908PubMedGoogle Scholar
  28. 28.
    Tanaka E (1999) Gender-related differences in pharmacokinetics and their clinical significance. J Clin Pharm Ther 24:339–346PubMedCrossRefGoogle Scholar
  29. 29.
    Wormhoudt LW, Commandeur JNM, Vermeulen NPE (1999) Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 29:59–124CrossRefPubMedGoogle Scholar
  30. 30.
    Knasmuller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, et al. (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 402:185–202PubMedGoogle Scholar
  31. 31.
    Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 189:233–246CrossRefPubMedGoogle Scholar
  32. 32.
    Wilkening S, Bader A (2003) Influence of culture time on the expression of drug-metabolizing enzymes in primary human hepatocytes and hepatoma cell line HepG2. J Biochem Molec Toxicol 17:207–213CrossRefGoogle Scholar
  33. 33.
    Grant H, Duthie SJ, Gray AG, Burke D (1988) Mixed function oxidase and UDP glucuronyltransferase activities in the human Hep G2 hepatoma cell line. Biochem Pharmacol 37:4111–4116PubMedCrossRefGoogle Scholar
  34. 34.
    Fardel O, Morel F, Ratanasanh D, Fautrel A, Beaune P, Guillouzo A (1992) Expression of drug metabolizing enzymes in human HepG2 hepatoma cells. Cellular Molec Aspects Cirrhosis 216:327–330Google Scholar
  35. 35.
    Perego P, Paolicchi A, Tongiani R, Pompella A, Tonarelli P, Carenni N, et al. (1997) The cell-specific anti-proliferative effect of reduced glutathione is mediated by gamma-glutamyl transpeptidase-dependent extracellular pro-oxidant reactions. Int J Cancer 71:246–250CrossRefPubMedGoogle Scholar
  36. 36.
    Ferretti A, D'Ascenzo S, Knijn A, Iorio E, Dolo V, Pavan A, Podo F (2002) Detection of polyol accumulation in a new ovarium carcinoma cell line, CABA I: a 1H NMR study. Br J Cancer 86:1180–1187CrossRefPubMedGoogle Scholar
  37. 37.
    Tucker GT (1992) The rational selection of drug interaction studies: implication of recent advantages in drug metabolism. Int J Clin Pharmacol Ther Toxicol 30:550–553PubMedGoogle Scholar
  38. 38.
    Levy RH, Thummel KE, Trager WF, Hansten PD, Eichelbaum M (2000) Metabolic drug intractions. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  39. 39.
    Desai PB, Duan JZ, Zhu YW, Kouzi S (1998) Human liver microsomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet 23:417–424PubMedGoogle Scholar
  40. 40.
    Vecht CJ, Wagner GL, Wilms EB (2003) Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurology 2:404–409CrossRefPubMedGoogle Scholar
  41. 41.
    MacLeod SL, Nowell S, Massengill J, Jazieh A, McClure G, Plaxco J, Kadlubar FF, Lan NP (2000) Cancer therapy and polymorphisms of cytochrome P450. Clin Chem Lab Med 38:883–887CrossRefPubMedGoogle Scholar
  42. 42.
    Eiselt R, Domanski TL, Zibat A, Mueller R, Presecan-Siedel E, Hustert E, Zanger UM, Brockmoller J, Klenk HP, Meyer UA, Khan KK, He YA, Halpert JR, Wojnowski L (2002) Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11:447–458CrossRefGoogle Scholar
  43. 43.
    van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2001) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48:1668–1671Google Scholar
  44. 44.
    Tukey RH, Strassburg CP (2000) Human UDP-glucuronosy- ltransferases: Metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616CrossRefPubMedGoogle Scholar
  45. 45.
    MacKenzie PI, Miners JO, McKinnon RA (2000) Polymorphisms in UDP glucuronosyltransferase genes: Functional consequences and clinical relvance. Clin Chem Lab Med 38:889–892CrossRefPubMedGoogle Scholar
  46. 46.
    Glatt H, Boeing H, Engelke CEH, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W (2001) Human cytosolic sulphotransferases: Genetics, characterization, toxicological aspects. Mutat Res 482:27–40PubMedGoogle Scholar
  47. 47.
    Coughtrie MWH (2002) Sulfation trough the looking glass—recent advances in sulfotransferase research for the curious. Pharmacogenomics J 2: 297–308CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Esther F. A. Brandon
    • 1
  • Rolf W. Sparidans
    • 1
    Email author
  • Ronald D. van Ooijen
    • 1
  • Irma Meijerman
    • 1
  • Luis Lopez Lazaro
    • 2
  • Ignacio Manzanares
    • 2
  • Jos H. Beijnen
    • 1
    • 3
  • Jan H. M. Schellens
    • 1
    • 4
  1. 1.Faculty of Science, Department of Pharmaceutical Sciences, Section of Biomedical Analysis, Division of Drug ToxicologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.PharmaMar, Tres CantosMadridSpain
  3. 3.Slotervaart HospitalAmsterdamThe Netherlands
  4. 4.The Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations