Skip to main content

Advertisement

Log in

Antiangiogenic effect of 2-benzoyl–phenoxy acetamide in EAT cell is mediated by HIF-1α and down regulation of VEGF of in-vivo

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Benzophenones and its analogues are known for wide range of biological properties. Synthetic benzophenone analogue 2-benzoyl -phenoxy acetamide (BP-1) is proven to be potent antitumor and proapoptotic activity against EAT cells in-vivo. In the present report, we studied the antiangiogenic effect of BP-1 in EAT cells induced angiogenesis. Treatment with BP-1 in-vivo was demonstrated by the down regulation of the secretion of VEGF from EAT cells and inhibition of blood vessels formation indicating the potential angioinhibitory effect of BP-1 in EAT cells. HIF-1α protein, a transcription factor known to be key a regulator in hypoxia-induced angiogenesis was also down regulated by BP-1. Our findings indicated that, HIF-1α nuclear sequestration is repressed by BP-1 through inhibition of nuclear translocation. We postulate that diminished HIF-1α nuclear presence and activity in BP-1 treated EAT cells could be responsible for decreased VEGF expression and antiangiogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent. J. Natl. Cancer Inst 82:4–6

    PubMed  CAS  Google Scholar 

  2. Kim KJ, Li B, Winner J, Armanini M, Gillett N, Philips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppress tumor growth in-vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  3. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung, DW (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol 5:1806–1814

    Article  PubMed  CAS  Google Scholar 

  4. Gasparini G, Harris AL (1995) Clinical implications of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13:765–782

    PubMed  CAS  Google Scholar 

  5. Stoelcker B, Echtenacher B, Weich HA, Sztajer H, Hcklin DJ, Mannel DN (2000) VEGF/Flk-1 interaction, a requirement for malignant ascites recurrence. J Interferon Cytokine Res 20:511–517

    Article  PubMed  CAS  Google Scholar 

  6. Mesiano S, Ferrara N, Jaffe, RB (1998) Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 153:1249–1256

    PubMed  CAS  Google Scholar 

  7. Yukita A, Asano M, Okamoto T, Mizutani S, Suzuki H (2000) Suppression of ascites formation and re-accumulation associated with human ovarian cancer by anti-VPF monoclonal antibody in- vivo. Anticancer Res 20:445–454

    Google Scholar 

  8. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild type p53 by hypoxia inducible factor 1-α. Nature 392:405–408

    Article  PubMed  CAS  Google Scholar 

  9. Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI (2002) Association of hypoxia-inducible factors 1α and 2α with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 95:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  10. Brown JM: Exploiting the hypoxic cancer cell (2000) mechanism and therapeutic stratergies. Mol Med Today 6:157–162

    Article  PubMed  CAS  Google Scholar 

  11. Kung AL, Wang S, Klco JM, Kalein WG, Livingston DM (2000) Supression of tumor growth through disruption of hypoxia inducible transcription. Nat Med 6:1335–1340

    Article  PubMed  CAS  Google Scholar 

  12. Warbrug O (1956) On the origin of cancer cells. Science 123:309–314

    Google Scholar 

  13. Harris JW, Meyskens F, Patt HM (1962) Biochemical studies of cytokinetics changes of tumor growth. Cancer Res 30:509–519

    Google Scholar 

  14. Gekeler V, Epple Kleyman J, Probst H (1993) Selective synchronous activation of early S-phase replicons of Ehrlic ascites cells. Mol Cell Biol 13:5020–5033

    PubMed  CAS  Google Scholar 

  15. Probst H, Schiffer H, Gekeler V, Kienzle-Pfeilsticker H, Stropp U, Stotzer KE, Frenzel-Stotzer I (1998) Oxyegen depedent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in-vitro and in-vivo. Cancer Res 48:2053–2060

    Google Scholar 

  16. Buchler P, Reber HA, Buchler MW, Friess H, Lavey HRS, Hines OJ (2004) Antiangiogenic activity of genistien in pancreatic carcinoma cell is mediated by the inhibition of Hypoxia inducible factor-1 and the down regulation of VEGF gene expression. Cancer 100:201–210

    Article  PubMed  CAS  Google Scholar 

  17. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxic mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  18. Magnusson KP, Satalino R, Qian W, Klein G, Wiman KG (1996) Is conversation of solid into more anoxic ascites tumor associated with p53 inactivation? Oncogene 17:2333–2337

    Article  CAS  Google Scholar 

  19. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in-vivo: High-resolution measurement reveal a lack of correlation. Nat Med 3:177–182

    Article  PubMed  CAS  Google Scholar 

  20. Inoue M, Mukai M, Hamanaka Y, Tatsuta M, Hiraoka M, Kondoh S (2004) Targetting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int J Oncology 25:713–720

    CAS  Google Scholar 

  21. Henry Jacobs GE, Carrington CMS, McLean S, Freeholds W (1999) Prenylated benzophenone derivatives from Caribbean Clusia species (Guttiferae). Plukenetiones B-G and xerophenone A. Tetrahedron 55:1581–1596

    Google Scholar 

  22. Karrer F, Meier H, Pascual A (2000) Short synthesis of 4-chloro- 4′-(chlorodifluoromethoxy) benzophenone. J Flour Chem 103:81–84

    Article  CAS  Google Scholar 

  23. Sheu SY, Tsai HJ, Chiang HC (1999) Benzophenones as xanthine oxidase inhibitors. Anticancer Res 19:1131–1135

    PubMed  CAS  Google Scholar 

  24. Burns DT, Tungkananuruk N, Thuwasin S (2000) Spectrophotometric determination of bismuth after extraction of tetrabutylammonium tetraiodobismuthate(III) with microcrystalline benzophenone. Anal Chim Acta 419:41–44

    Article  CAS  Google Scholar 

  25. Kumazawa E, Hirotani K, Clifford Burford S, Kawaagoe K, Miwa T, Mitsui I, Ejima A (1997) Synthesis and antitumor activity of novel Benzopheneone derivatives. Chem Pharm Bull 45:1470–1474

    PubMed  CAS  Google Scholar 

  26. Tanaka T, Kohno H, Shimada R, Kagami S, Yamaguchi F, Kataoka S, Ariga T, Murakami Koshimizu K, Ohigashi H (2000) Prevention of colonic aberrant crypt foci by dietary feeding of garcinol in male F344 rats. Carcinogenesis 21:1183–1189

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh HP, Liou JP, Lin YT, Mahindroo N, Chang JY, Yang YN, Chern SS, Tan UK, Chang CW, Chen TW, Lin CH, Chang YY, Wang CC (2003) Structural activity and crystallographic analysis of benzophenone derivatives-the potential anticancer agents. Bioorg Med Chem Lett 13:101–105

    Article  PubMed  CAS  Google Scholar 

  28. Ito C, Itoigawa M, Miyamoto Y, Onoda S, Rao KS, Mukainaka T, Tokuda H, Nishino H, Furukawa H (2003) Polyprenylated benzophenones from Garcinia assigu and their potential cancer chemo preventive activities. J Nat Prod 66:206–209

    Article  PubMed  CAS  Google Scholar 

  29. Matsumoto K, Akao Y, Kobayashl E, Ito T, Ohgucih T, Tanaka T, Inuma M, Nozawa Y (2003) Cytotoxic benzophenone derivatives from garcinia species displays a strong apoptosis inducing effect against human leukemia cell lines. Biol Pharm Bull 26:569–571

    Article  PubMed  CAS  Google Scholar 

  30. Liuo JP, Chang CW, Song JS, Yang YN, Yeh CF, Tseng HY, Lo YK, Chang YL, Chang CM, Haiesh HP (2002) Synthesis and structure activity relationship of 2-aminobenzophenone derivatives as antimitotic agents. J Med Chem 45:2556–2562

    Article  CAS  Google Scholar 

  31. Liekens S, Clercq ED, Neytes J. Angiogenesis (2001) regulator and clinical applications. Biochemical pharmacology 61:253–270

    Article  PubMed  CAS  Google Scholar 

  32. Prabhakar BT, Khanum SA, Jayashree K, Salimath BP, Shashikanth S: Anti-tumor and proapoptotic effect of novel synthetic benzophenone analogues in Ehrlich ascites tumor cells. Bioorg.Med.Chem. 2005 (Article in press)

  33. Folkman J. (2000) Tumor angiogenesis. In: Holland JF, Frei E III, Bast RC, Jr, Kufe DW, Pollock RE, Weichselbanm RR (eds) Cancer medicine, 5th ed. Canada, BC, Decker Inc. 132–152

  34. Folkman J (2001) Angiogenesis In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds.), Harrison’s textbook of internal medicine. 15th ed. New York: McGraw–Hill: 517–530

  35. Luo JC, Yamaguchi S, Shinkai A, Shitara K, Shibuya M (1998) Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res 58:2652–2660

    PubMed  CAS  Google Scholar 

  36. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    PubMed  CAS  Google Scholar 

  37. Nagy JA, Morgan ES, Herzberg KT, Meyers MS, Yeo KT, Sioussat TM (1995) Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermiability, and ascites fluid accumulation. Cancer Res 55:360–368

    PubMed  CAS  Google Scholar 

  38. Mesiano S, Ferrara N, Jaffe RB (1998) Role of vascular endothelial growth factor in ovarian cancer. Inhibition of ascites formation by immunoneutralization. Am J Pathol 153:1249–1256

    CAS  Google Scholar 

  39. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumor growth in-vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  40. Borgstrom P, Hillan, KJ, Sriramarao P, Ferrara N (1996) Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody, novel concept of angiostatic therapy from intravital videomicroscopy. Cancer Res 56:4032–4039

    PubMed  CAS  Google Scholar 

  41. Blagosklonny MV (2001) Hypoxia-inducible factor: Achilles’ heel of antiangiogenic cancer therapy. Int J Oncol 19:257–262

    PubMed  CAS  Google Scholar 

  42. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen, and nutrient supply and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  43. Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka, M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi P. Salimath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakar, B.T., Khanum, S.A., Shashikanth, S. et al. Antiangiogenic effect of 2-benzoyl–phenoxy acetamide in EAT cell is mediated by HIF-1α and down regulation of VEGF of in-vivo . Invest New Drugs 24, 471–478 (2006). https://doi.org/10.1007/s10637-006-6587-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-006-6587-0

Keywords

Navigation