Cytotoxicity of sphingoid marine compound analogs in mono- and multilayered solid tumor cell cultures

  • José M. PadrónEmail author
  • Godefridus J. Peters
Preclinical Studies


A subset of four synthetic sphingoid marine compound analogs was chosen from a preliminary in vitro cytotoxicity study for further analysis. The selected analogs were initially screened in monolayer cultures for their anticancer potential against a panel of eight human tumor cell lines, ovarian, colon and lung cancer, squamous cell carcinoma and leukemia producing IC50 values ranging from 1.5 to 6.9 μM. In a secondary screening, the sphingoid analogs were evaluated against multilayered postconfluent cultures of A2780 ovarian cancer and WiDr colon cancer cells. In this model, compounds 5 and 8 were the most active derivatives showing EC50 values in the range 25–32 μM. The performance of 5 and 8 against both cell lines was not dependent on the cell culture model as shown with resistance factor values in the range 8–12. Cell cycle studies in HL60 leukemia cells showed an arrest in G 0/G 1 at a low drug concentration (3 μM) but accumulation in S phase at a high drug concentration (9 μM). It can be concluded that the analogs showed a cell line independent activity, with an apparent selectivity against cells grown in more physiological three-dimensional condition compared to standard anticancer drugs.

Key Words

sphingosine sphinganine spisulosine pachastrissamine solid tumor multilayered postconfluent cultures 


  1. 1.
    Mayer AMS: Marine pharmacology in 1998: antitumor and cytotoxic compounds. The Pharmacologist 41: 159–164, 1999Google Scholar
  2. 2.
    Mayer AMS, Lehmann VKB: Marine pharmacology in 1999: antitumor and cytotoxic compounds. Anticancer Res 21: 2489–2500, 2001PubMedGoogle Scholar
  3. 3.
    Mayer AMS, Gustafson KR: Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 105: 291–299, 2003CrossRefPubMedGoogle Scholar
  4. 4.
    Mayer AMS, Gustafson KR: Marine pharmacology in 2001–2: antitumour and cytotoxic compounds. Eur J Cancer 40: 2676–2704, 2004CrossRefPubMedGoogle Scholar
  5. 5.
    Rinehart KL, Fregeau NL, Warwick RA: US Patent No. 6107520, 1998Google Scholar
  6. 6.
    Kuroda I, Musman M, Ohtani II, Ichiba T, Tanaka J, Gravalos DG, Higa T: Pachastrissamine, a cytotoxic anhydrophytosphingosine from a marine sponge, Pachastrissa sp. J Nat Prod 65: 1505–1506, 2002CrossRefPubMedGoogle Scholar
  7. 7.
    Ohta H, Yatomi Y, Sweeney EA, Hakomori S, Igarashi YA: Possible role of sphingosine in induction of apoptosis by tumor necrosis factor-α in human neutrophils. FEBS Lett 355: 267–270, 1994CrossRefPubMedGoogle Scholar
  8. 8.
    Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA: Tumor necrosis factor α-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 98: 2854–2865, 1996PubMedCrossRefGoogle Scholar
  9. 9.
    Hung WC, Chang HC, Chuang LY: Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem J 338: 161–166, 1999CrossRefPubMedGoogle Scholar
  10. 10.
    del Olmo E, Macho A, Alves M, López JL, el Banoua F, Muñoz E, San Feliciano A: Long-chain aminoalcohol and diamine derivatives induce apoptosis through a caspase-3 dependent pathway. Bioorg Med Chem Lett 12: 2621–2626, 2002CrossRefPubMedGoogle Scholar
  11. 11.
    Kokotos G, Padrón JM, Noula C, Gibbons WA, Martín VS: A general approach to the enantiomeric synthesis of lipidic α-amino acids and vicinal amino alcohols. Tetrahedron: Asymmetry 7: 857–866, 1996CrossRefGoogle Scholar
  12. 12.
    Padrón JM, Kokotos G, Martín T, Markidis T, Gibbons WA, Martín VS: Enantiospecific synthesis of α-amino acid semialdehydes: a key step for the synthesis of unnatural unsaturated and saturated α-amino acids. Tetrahedron: Asymmetry 9: 3381–3394, 1998CrossRefGoogle Scholar
  13. 13.
    Kokotos G, Padrón JM, Martín T, Gibbons WA, Martín VS: A general approach to the asymmetric synthesis of unsaturated lipidic α-amino acids. The first synthesis of α-aminoarachidonic acid. J Org Chem 63: 3741–3744, 1998CrossRefGoogle Scholar
  14. 14.
    Padrón JM, Martín VS, Hadjipavlou-Litina D, Noula C, Constantinou-Kokotou V, Peters GJ, Kokotos G: Synthesis, in vitro cytotoxicity and in vivo anti-inflammatory activity of long chain 3-amino-1,2-diols. Bioorg Med Chem Lett 9: 821–826, 1999CrossRefPubMedGoogle Scholar
  15. 15.
    Markidis T, Padrón JM, Martín VS, Peters GJ, Kokotos G: Synthesis and in vitro cytotoxicity of long chain 2-amino alcohols and 1,2-diamines. Anticancer Res 21: 2835–2840, 2001PubMedGoogle Scholar
  16. 16.
    Pizao PE, Peters GJ, van Ark-Otte J, Smets LA, Smitskamp-Wilms E, Winograd B, Pinedo HM, Giaccone G: Cytotoxic effects of anticancer agents on subconfluent and multilayered postconfluent cultures. Eur J Cancer 29A: 1566–1573, 1993CrossRefPubMedGoogle Scholar
  17. 17.
    Padrón JM, van der Wilt CL, Smid K, Smitskamp-Wilms E, Backus HHJ, Pizao PE, Giaccone G, Peters GJ: The multilayered postconfluent cell culture as a model for drug screening. Crit Rev Oncol Hematol 36: 141–157, 2000PubMedGoogle Scholar
  18. 18.
    Skehan P, Storeng P, Scudeiro D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR: New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82: 1107–1112, 1990PubMedGoogle Scholar
  19. 19.
    Keepers YP, Pizao PE, Peters GJ, van Ark-Otte J, Winograd B: Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 27: 897–900, 1991PubMedCrossRefGoogle Scholar
  20. 20.
    Lu Y, Han J, Scanlon KJ: Biochemical and molecular properties of cisplatin-resistant A2780 cells grown in folinic acid. J Biol Chem 263: 4891–4894, 1998Google Scholar
  21. 21.
    Ruiz van Haperen V, Veerman G, Eriksson S, Boven E, Stegmann A, Hermsen M, Vermorken JB, Pinedo HM, Peters GJ: Development and molecular characterization of 2′,2′-difluorodeoxycytidine resistant variant of the human ovarian carcinoma cell line A2780. Cancer Res 54: 4138–4143, 1994Google Scholar
  22. 22.
    Carey TE: Establishment of epidermoid carcinoma cell lines: In: Wittes RE (eds) Head and Neck Cancer. John Wiley & Sons, New York, 1985 pp 287–314.Google Scholar
  23. 23.
    Bergman AM, Ruiz van Haperen VWT, Veerman G, Kuiper CM, Peters GJ: Synergistic interaction between cisplatin and gemcitabine in vitro. Clin Cancer Res 2: 521–530, 1996PubMedGoogle Scholar
  24. 24.
    van Moorsel CJA, Veerman G, Bergman AM, Guechev A, Vermorken JB, Postmus PE, Peters GJ: Combination chemotherapy studies with gemcitabine. Seminars in Oncology 24(Suppl 7): 17–23, 1997Google Scholar
  25. 25.
    Pizao PE, Peters GJ, van Ark-Otte J, Smets LA, Smitskamp-Wilms E, Winograd B, Pinedo HM, Giaccone G: Cytotoxic effects of anticancer agents on subconfluent and multilayered postconfluent cultures. Eur J Cancer 29A: 1566–1573, 1993 Google Scholar
  26. 26.
    The statistical analysis was done with the method “Resampling probability estimates for the difference between the means of two independent samples” accessible via Internet (
  27. 27.
    Niiro H, Azuma H, Tanago S, Matsumura K, Shikata K, Tachibana T, Ogino K: (3Z)-2-Acetylamino-3-octadecen-1-ol as a potent apoptotic agent against HL60 cells. Bioorg Med Chem 12: 45–51, 2004CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffmann TK, Leenen K, Hafner D, Balz V, Gerharz CD, Grund A, Ballo H, Hauser U, Bier H: Antitumor activity of protein kinase C inhibitors and cisplatin in human head and neck squamous cell carcinoma lines. Anticancer Drugs 13: 93–100, 2002CrossRefPubMedGoogle Scholar
  29. 29.
    Dragusin M, Gurgui C, Schwarzmann G, Hoernschemeyer J, van Echten-Deckert G: Metabolism of the unnatural anticancer lipid safingol, L-threo-dihydrosphingosine, in cultured cells. J Lipid Res 44: 1772–1779, 2003CrossRefPubMedGoogle Scholar
  30. 30.
    Tritton TR, Hickman J: How to kill cancer cells: membrane and cell signalling as targets in cancer chemotherapy. Cancer Cells 2: 95–105, 1990PubMedGoogle Scholar
  31. 31.
    Workman P: The cell membrane and cell signals: new targets for novel anticancer drugs. Ann Oncol 1: 100–111, 1990PubMedGoogle Scholar
  32. 32.
    Ahn EH, Schroeder JJ: Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp Biol Med 227: 345–353, 2002Google Scholar
  33. 33.
    Cuadros R, Montejo de Garcini E, Wandosell F, Faircloth G, Fernández-Sousa JM, Avila J: The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 152: 23–29, 2000CrossRefPubMedGoogle Scholar
  34. 34.
    Merrill AH, Nimkar S, Menaldino D, Hannun YA, Loomis C, Bell RM, Tyagi SR, Lambeth D, Stevens VL, Hunter R, Liottas DC: Structural requirements for long-chain (sphingoid) base inhibition of protein kinase C in vitro and for the cellular effects of these compounds. Biochemistry 28: 3138–3145, 1989CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2005

Authors and Affiliations

  1. 1.Instituto Canario de Investigación del CáncerUnidad de Investigación, Hospital Univ. NS de CandelariaS/C de TenerifeSpain
  2. 2.Department of Medical OncologyVU University Medical Center, De Boelelaan 1117, 1081 HVAmsterdamThe Netherlands
  3. 3.Instituto Canario de Investigación del Cáncer (ICIC)Red Temática de Investigación Cooperativa de Centros de Cáncer (RTICCC)S/C de TenerifeSpain

Personalised recommendations