Documenta Ophthalmologica

, Volume 129, Issue 2, pp 71–84 | Cite as

Visual electrophysiology in the clinical evaluation of optic neuritis, chiasmal tumours, achiasmia, and ocular albinism: an overview

  • Jelka Brecelj
Review Article


Background and Methods In routine clinical evaluation of optic neuritis and chiasmal tumours, pattern electroretinography and visual evoked potentials (VEPs) to pattern-reversal stimulation are useful examinations. Similarly, in achiasmia and ocular albinism, VEPs to flash and pattern-onset stimulation provide relevant information. Results The role of visual electrophysiology in these diseases is to assess potential dysfunction of the visual pathway: (a) at the acute stage of optic neuritis, to determine the magnitude of conduction block of the optic nerve fibres; (b) at the clinical recovery stage of optic neuritis, to determine optic nerve conduction delay due to demyelination, and to follow possible remyelination; (c) at the recovery of optic neuritis when visual acuity does not normalise, to define loss of optic nerve fibres and retrograde degeneration of retinal ganglion cells; (d) in tumours at the chiasm, to detect abnormal conduction along the crossed and/or uncrossed fibres; and (e) in achiasmia or albinism, which are both congenital disorders associated with nystagmus, to detect achiasmia and absence of or reduced optic nerve fibre decussation at the chiasm, or to detect ocular albinism and excess of optic nerve fibre decussation at the chiasm. In optic neuritis, two recent examinations have been used to detect retrograde axonal degeneration: photopic negative response of the electroretinogram, to assess dysfunction of ganglion cell axons; and optic coherence tomography, to measure thinning of the retinal nerve fibre layer. In optic neuritis, multifocal VEPs provide a promising clinical examination, because this can show areas that are associated with normal or abnormal optic nerve fibre function. Conclusions Visual electrophysiology defines function of the visual pathway and is relevant: (1) in optic neuritis, when visual acuity does not recover well; (2) in tumours of the chiasm with normal visual fields, as in paediatric patients who cannot adequately perform perimetry; and (3) in children with congenital nystagmus and suspected achiasmia or ocular albinism.


VEP PERG Optic neuritis Tumours of the chiasm Achiasmia Albinism 



I am grateful to my mentor professor Tine S Prevec MD, PhD and to Martin A Halliday MD, for their teaching  in the field of the Visual Evoked Potentials, and to Anthony Kriss PhD, for his guidance in Paediatric electrophysiology. I am thankful to Maja Šuštar PhD and Barbara Klemenc for preparing figures. This was presented at the Symposium on Clinical Neurophysiology of Vision and on Eye Movements with the 26th Dr. Janez Faganel Memorial Lecture, Ljubljana, 17–18 September 2010. Grant of Slovenian Research Agency (P3-0333).


  1. 1.
    Halliday AM, Mc Donald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985PubMedCrossRefGoogle Scholar
  2. 2.
    Halliday AM, McDonald WI, Mushin J (1973) Visual evoked response in diagnosis of multiple sclerosis. Br Med J 4:661–664CrossRefGoogle Scholar
  3. 3.
    Halliday AM, Halliday E, Kriss A, McDonald WI, Mushin J (1976) The pattern-evoked potential in compression of the anterior visual pathways. Brain 99:357–374PubMedCrossRefGoogle Scholar
  4. 4.
    Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119PubMedCrossRefGoogle Scholar
  5. 5.
    Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG)—2012 update. Doc Ophthalmol 126:1–7CrossRefGoogle Scholar
  6. 6.
    Holder GE, Celesia GG, Miyake Y, Tobimatsu S, Weleber RG (2010) International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol 121:1393–1409PubMedCrossRefGoogle Scholar
  7. 7.
    Holder GE, Gale RP, Acheson JF, Robson AG (2009) Electrodiagnostic assessment in optic nerve disease. Curr Opin Neurol 22:3–10PubMedCrossRefGoogle Scholar
  8. 8.
    Holder GE (2001) The pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRefGoogle Scholar
  9. 9.
    Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMedGoogle Scholar
  10. 10.
    Sustar M, Cvenkel B, Brecelj J (2009) The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol 118:167–177PubMedCrossRefGoogle Scholar
  11. 11.
    Brecelj J, Cunningham K (1985) Occipital distribution of foveal half-field responses. Doc Ophthalmol 59:157–165PubMedCrossRefGoogle Scholar
  12. 12.
    Brecelj J, Kakigi R, Koyama S, Hoshiyama M (1998) Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr 10:227–237PubMedGoogle Scholar
  13. 13.
    Brecelj J (1991) Visual evoked potentials and the localization of visual pathway lesions. Spektrum Augenheilkd 5:114–122CrossRefGoogle Scholar
  14. 14.
    Fortune B, Hood DC (2003) Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 44:1364–1375PubMedCrossRefGoogle Scholar
  15. 15.
    Plant GT (2008) Optic neuritis and multiple sclerosis. Curr Opin Neurol 21:16–21PubMedCrossRefGoogle Scholar
  16. 16.
    Shams PN, Plant GT (2009) Optic neuritis: a review. Int MS J 16:82–89PubMedGoogle Scholar
  17. 17.
    Kidd D, Burton B, Plant GT, Graham EM (2003) Chronic relapsing inflammatory optic neuropathy (CRION). Brain 126:276–284PubMedCrossRefGoogle Scholar
  18. 18.
    Kriss A, Francis DA, Cuendet F, Halliday AM, Taylor DSI, Wilson J, Keast-Butler J, Batchelor JR, McDonald WI (1988) Recovery after optic neuritis in childhood. J Neurol Neurosurg Psychiatry 51:1253–1258PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B (2006) The clinical features, MRI findings, and outcome of optic neuritis in children. Neurology 67:258–262PubMedCrossRefGoogle Scholar
  20. 20.
    Jones SJ, Brusa A (2003) Neurophysiological evidence for long-term repair of MS lesions: implications for axon protection. J Neurol Sci 206:193–198PubMedCrossRefGoogle Scholar
  21. 21.
    Brecelj J, Denišlič M, Prevec TS, Štrucl M (1981) Visual evoked potentials in the assessment of subclinical demyelinating lesions of the visual pathway (in Slovene). Zdrav Vestn 50:145–149Google Scholar
  22. 22.
    Brecelj J, Kriss A (1989) Pattern reversal VEPs in optic neuritis. Advantages of central and peripheral half-field stimulation. Neuro-Ophthalmology 9:55–63CrossRefGoogle Scholar
  23. 23.
    Brecelj J, Štrucl M, Hawlina M (1990) Central fiber contribution to W-shaped visual evoked potentials in patients with optic neuritis. Doc Ophthalmol 75:155–163PubMedCrossRefGoogle Scholar
  24. 24.
    Brecelj J, Stirn-Kranjc B Tekavčič-Pompe M (1998) A VEP and PERG study in children with suspected optic neuritis. In: Hashimoto I, Kakigi R (eds) Recent advances in human neurophysiology: Proceedings of the 6th international evoked potentials symposium, Okazaki, Japan 21–25 March 1998. Elsevier, Amsterdam, pp 496–501Google Scholar
  25. 25.
    Tekavčič-Pompe M, Stirn-Kranjc B, Brecelj J (2003) Optic neuritis in children—clinical and electrophysiological follow-up. Doc Ophthalmol 107:261–270PubMedCrossRefGoogle Scholar
  26. 26.
    Liščić RM, Brecelj J (2004) Visual evoked potentials in multiple sclerosis patients treated with interferon beta-1a. Croat Med J 45(3):323–327PubMedGoogle Scholar
  27. 27.
    Holder GE (1991) The incidence of abnormal pattern electroretinography in optic nerve demyelination. Electroenceph Clin Neurophysiol 78:18–26PubMedCrossRefGoogle Scholar
  28. 28.
    Rinalduzzi S, Brusa A, Jones SJ (2001) Variation of visual evoked potential delay to stimulation of central, nasal, and temporal regions of the macula in optic neuritis. J Neurol Neurosurg Psychiatry 70:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis. A 2-year visual evoked potential and psychophysical serial study. Brain 124:468–479PubMedCrossRefGoogle Scholar
  30. 30.
    Henderson APD, Trip SA, Schlottmann PG, Altmann DR, Garway-Heath DF, Plant GT, Miller DH (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287PubMedGoogle Scholar
  31. 31.
    Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GP, Miller DH (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391PubMedCrossRefGoogle Scholar
  32. 32.
    Hokazono K, Raza AS, Oyamada MK, Hood DC, Monteiro ML (2013) Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry. Doc Ophthalmol 127:201–215PubMedCrossRefGoogle Scholar
  33. 33.
    Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ (2012) The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci 53:1315–1323Google Scholar
  34. 34.
    Klistorner A, Fraser C, Garrick R, Graham S, Arvind H (2008) Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol 116:19–27CrossRefGoogle Scholar
  35. 35.
    Fraser CL, Klistorner A, Graham SL, Garrick R, Billson FA, Grigg JR (2006) Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis. Ophthalmology 113:315–323CrossRefGoogle Scholar
  36. 36.
    Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM (2007) Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci 48:692–698PubMedCrossRefGoogle Scholar
  37. 37.
    Niklas A, Sebraoui H, Heß E, Wagner A, Bergh FT (2009) Outcome measures for trials of remyelinating agents in multiple sclerosis: retrospective longitudinal analysis of visual evoked potential latency. Mult Scler 15:68–74PubMedCrossRefGoogle Scholar
  38. 38.
    Holder GE (2006) Chiasmal and retrochiasmal lesions. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 857–865Google Scholar
  39. 39.
    Halliday AM (1993) The visual evoked potential investigation of chiasmal and retrochiasmal lesions, field defects and systemic diseases. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill Livingstone, Edinburgh, pp 279–357Google Scholar
  40. 40.
    Brecelj J (1994) Electrodiagnostics of chiasmal compressive lesions. Int J Psychophysiol 16:263–272PubMedCrossRefGoogle Scholar
  41. 41.
    Parmar DN, Sofat A, Bowman R, Bartlett JR, Holder GH (2000) Visual prognostic value of the pattern electroretinogram in chiasmal compression. Br J Ophthalmol 84:1024–1026PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Brecelj J, Stirn-Kranjc B, Škrbec M (2000) Visual electrophysiology in children with tumours affecting the visual pathway. Doc Ophthamol 101:125–154CrossRefGoogle Scholar
  43. 43.
    Brecelj J (1992) A VEP study of the visual pathway function in compressive lesions of the optic chiasm. Full-field versus half-field stimulation. Electroenceph Clin Neurophysiol 84:209–218PubMedCrossRefGoogle Scholar
  44. 44.
    Brecelj J, Denišlič M, Škrbec M (1989) Visual evoked potential abnormalities in chiasmal lesions. Doc Ophthamol 73:139–148CrossRefGoogle Scholar
  45. 45.
    Brecelj J, Denišlič M, Škrbec M (1992) Visual evoked potentials in compressive lesions of the optic chiasm. Neuro-Ophthalmology 12:207–214CrossRefGoogle Scholar
  46. 46.
    Brecelj J, Stirn-Kranjc B (1992) Electropysiologic evaluation of the visual pathway in children. Doc Ophthamol 79:313–323CrossRefGoogle Scholar
  47. 47.
    Štrucl M, Brecelj J, Hawlina M (1997) Visual evoked potential abnormalities in compressive chiasmal lesions: the relevance of central visual field defects. Neuro-Ophthalmology 17:91–100CrossRefGoogle Scholar
  48. 48.
    Mellow TB, Liasis A, Lyons R, Thompson D (2011) When do asymmetrical full-field pattern reversal visual evoked potentials indicate visual pathway dysfunction in children? Doc Ophthalmol 122:9–18PubMedCrossRefGoogle Scholar
  49. 49.
    Moradi P, Robson AG, Rose GE, Holder GE (2008) Electrophysiological monitoring in a patient with an optic nerve glioma. Doc Ophthalmol 117:171–174PubMedCrossRefGoogle Scholar
  50. 50.
    Mierlo CV, Spileers W, Legius E, Casteels I, Cassiman C (2013) Role of visual evoked potentials in the assessment and management of optic pathway gliomas in children. Doc Ophthamol 127:177–190 Google Scholar
  51. 51.
    Hidajat RR, McLay JL, Goode DH, Hidayat JR (2006) The value of VEP in the diagnosis and post-operative monitoring of meningeoma. Doc Ophthalmol 113:165–169PubMedCrossRefGoogle Scholar
  52. 52.
    Danesh-Meyer HV, Carroll SC, Gaskin BJ, Gao A, Gamble GD (2006) Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies. Invest Ophthalmol Vis Sci 47:1458–1463PubMedCrossRefGoogle Scholar
  53. 53.
    Kurent A, Stirn-Kranjc A, Brecelj J (2014) Eletroretinographic characteristics in children with infantile nystagmus syndrome and early onset retinal dystrophies. Eur J Ophthalmol (in press) Google Scholar
  54. 54.
    Sami DA, Saunders D, Thompson DA, Russell-Eggitt IM, Nischal KK, Jeffery G, Dattani M, Clement RA, Liassis A, Taylor DS (2005) The achiasmia spectrum: congenitally reduced chiasmal decussation. Br J Ophthalmol 89:1311–1317PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Thompson DA, Kriss A, Chong K, Harris C, Russell-Eggitt I, Shawat F, Neville BGR, Aclimandos W, Taylor DSI (1999) Visual evoked potential evidence of chiasmal hypoplasia. Ophthalmology 106:2354–2361PubMedCrossRefGoogle Scholar
  56. 56.
    Apkarian P, Bour LJ, Barth PG, Wenniger-Prick L, Verbeeten B (1995) Non-decussating retinal-fugal fibre syndrome. An inborn achiasmatic malformation associated with visuotopic misrouting, visual evoked potential ipsilateral asymmetry and nystagmus. Brain 118:1195–1216PubMedCrossRefGoogle Scholar
  57. 57.
    Russell-Eggitt I, Kriss A, Taylor DSI (1990) Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 74:136–140PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Apkarian P, Reits D, Spekreijse H, van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroenceph Clin Neurophysiol 55:513–531PubMedCrossRefGoogle Scholar
  59. 59.
    Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11:185–192PubMedCrossRefGoogle Scholar
  60. 60.
    Kriss A, Russell-Eggitt I, Harris CM, Lloyd IC, Taylor D (1992) Aspects of albinism. Ophthalmic Paediatr Genet 13:89–100PubMedCrossRefGoogle Scholar
  61. 61.
    Dorey SE, Neveu MM, Burton LC, Sloper JJ, Holder GE (2003) The clinical features of albinism and their correlation with visual evoked potentials. Br J Ophthalmol 87:767–772PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Apkarian P, Bour LJ (2006) Aberrant albino and achiasmat visual pathways: noninvasive electrophysiological assessment. In: Heckenlively JR, Arden GB  (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 369–397Google Scholar
  63. 63.
    Brecelj J, Sustar M, Pečarič-Meglič N, Škrbec M, Stirn-Kranjc B (2012) VEP characteristics in children with achiasmia, in comparison to albino and healthy children. Doc Ophthalmol 124:109–123PubMedCrossRefGoogle Scholar
  64. 64.
    Hoffmann MB, Seufert PS, Bach M (2004) Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clin Neurophysiol 115(11):2659–2665PubMedCrossRefGoogle Scholar
  65. 65.
    Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N (2012) Achiasmia, electrodiagnosis, and clinical characteristics. In: Harris C, Gottlob I, Sanders J (eds) The challenge of nystagmus: Proceedings of the nystagmus network research workshop, Abingdon, UK, 2–5 September 2009. Nystagmus Network, pp 143–168Google Scholar
  66. 66.
    Brecelj J, Stirn-Kranjc B, Pečarič-Meglič N, Škrbec M (2007) VEP asymmetry with ophthalmological and MRI findings in two achiasmatic children. Doc Ophthalmol 114:53–65PubMedCrossRefGoogle Scholar
  67. 67.
    Brown MC, Southern CL, Anbarasu A, Kaye SB, Fisher AC, Hagan RP, Newman WD (2006) Congenital absence of optic chiasm: demonstration of an uncrossed visual pathway using monocular flash visual evoked potentials. Doc Ophthalmol 113:1–4PubMedCrossRefGoogle Scholar
  68. 68.
    Kriss A (1996) Nystagmus and pediatric visual electrophysiology. In: Kimura J, Shibasaki H (eds) Recent advances in clinical neurophysiology: Proceedings of the Xth international congress of EMG and clinical neurophysiology, Kyoto, Japan 15–19 October 1995. Elsevier, Amsterdam, pp 480–487Google Scholar
  69. 69.
    Pomeranz HD, Agadzi AK, Ekesten B (2006) Achiasmia and unilateral nerve hypoplasia in an otherwise healthy subject. Acta Ophthalmol Scand 84:140–144PubMedCrossRefGoogle Scholar
  70. 70.
    Szanyi J, Kubová Z, Kremláček J, Langrová J, Vít F, Kuba M, Szanyi J, Plíšek S (2012) Pattern and motion-related visual-evoked potentials in neuroborreliosis: follow-up study. J Clin Neurophysiol 29:174–180PubMedCrossRefGoogle Scholar
  71. 71.
    Tekavčič Pompe M, Stirn Kranjc B, Brecelj J (2014) Chromatic visual evoked potentials in paediatric population. Doc Ophthalmol 128:43–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Unit for Visual Electrophysiology, Eye HospitalUniversity Medical CentreLjubljanaSlovenia

Personalised recommendations