Skip to main content

Advertisement

Log in

Association between multifocal electroretinograms, optical coherence tomography and central visual sensitivity in advanced retinitis pigmentosa

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association between automated perimetry, multifocal electroretinogram (mfERG) and optical coherence tomography (OCT) measurements in patients with advanced retinitis pigmentosa (RP).

Methods

Twenty-five patients with advanced RP were included. Central visual field sensitivity (VFS) was evaluated using an average of visual sensitivity value at central four test points during central 30-2 static automated perimetry. OCT imaging was conducted, and the inner and outer segment (IS/OS) line was classified into three groups: Group 1, absence; Group 2, partially intact; and Group 3, intact. Central retinal thickness (CRT) that is the retinal thickness of central 3.0 mm was also evaluated. Average amplitude and implicit time of N1 and P1 in ring 1 and 2 were measured on mfERG. Comparisons of VFS, mfERG and OCT among the three subgroups were performed following IS/OS integrity. Relationship among VFS, mfERG and CRT was evaluated by regression analysis.

Results

Group 3 patients with an intact IS/OS line showed a better VFS, and amplitude of mfERG response than those of Group 1 and 2. VFS and amplitudes of mfERG were correlated significantly with CRT in linear regression analysis.

Conclusions

Disrupted IS/OS integrity was associated with visual dysfunction which was shown by decreased amplitude of mfERG response and reduced central VFS. CRT was significantly correlated with amplitude of mfERG response and central VFS. An eye with the more reduced CRT was associated with the worse amplitude of mfERG response and central VFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRT:

Central retinal thickness

IS/OS:

Inner and outer segment

VFS:

Visual field sensitivity

References

  1. Musarella MA, Macdonald IM (2011) Current concepts in the treatment of retinitis pigmentosa. J Ophthalmol 2011:753547

    PubMed  Google Scholar 

  2. Cronin T, Leveillard T, Sahel JA (2007) Retinal degenerations: from cell signaling to cell therapy; pre-clinical and clinical issues. Curr Gene Ther 7(2):121–129

    Article  PubMed  CAS  Google Scholar 

  3. Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22(5):607–655

    Article  PubMed  Google Scholar 

  4. Li ZY, Kljavin IJ, Milam AH (1995) Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci 15(8):5429–5438

    PubMed  CAS  Google Scholar 

  5. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40

    Article  PubMed  Google Scholar 

  6. Sun X, Pawlyk B, Xu X, Liu X, Bulgakov OV, Adamian M, Sandberg MA, Khani SC, Tan MH, Smith AJ, Ali RR, Li T (2010) Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther 17(1):117–131

    Article  PubMed  CAS  Google Scholar 

  7. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    Article  PubMed  CAS  Google Scholar 

  8. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  PubMed  CAS  Google Scholar 

  9. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413–417

    Article  PubMed  CAS  Google Scholar 

  10. Enzmann V, Yolcu E, Kaplan HJ, Ildstad ST (2009) Stem cells as tools in regenerative therapy for retinal degeneration. Arch Ophthalmol 127(4):563–571

    Article  PubMed  Google Scholar 

  11. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8(3):189–199

    Article  PubMed  CAS  Google Scholar 

  12. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146(2):172–182

    Article  PubMed  Google Scholar 

  13. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207

    Article  PubMed  CAS  Google Scholar 

  14. Humayun MS, de Juan E Jr. (1998) Artificial vision. Eye (Lond). 12(Pt 3b):605–607

  15. Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E Jr, Humayun MS (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356

    Article  PubMed  Google Scholar 

  16. Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL (2005) The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 46(9):3349–3354

    Article  PubMed  Google Scholar 

  17. Wolsley CJ, Silvestri G, O’Neill J, Saunders KJ, Anderson RS (2009) The association between multifocal electroretinograms and OCT retinal thickness in retinitis pigmentosa patients with good visual acuity. Eye (Lond) 23(7):1524–1531

    Article  CAS  Google Scholar 

  18. Aleman TS, Cideciyan AV, Sumaroka A, Windsor EA, Herrera W, White DA, Kaushal S, Naidu A, Roman AJ, Schwartz SB, Stone EM, Jacobson SG (2008) Retinal laminar architecture in human retinitis pigmentosa caused by rhodopsin gene mutations. Invest Ophthalmol Vis Sci 49(4):1580–1590

    Article  PubMed  Google Scholar 

  19. Li Q, Timmers AM, Hunter K, Gonzalez-Pola C, Lewin AS, Reitze DH, Hauswirth WW (2001) Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse. Invest Ophthalmol Vis Sci 42(12):2981–2989

    PubMed  CAS  Google Scholar 

  20. Horio N, Kachi S, Hori K, Okamoto Y, Yamamoto E, Terasaki H, Miyake Y (2001) Progressive change of optical coherence tomography scans in retinal degeneration slow mice. Arch Ophthalmol 119(9):1329–1332

    Article  PubMed  CAS  Google Scholar 

  21. Aizawa S, Mitamura Y, Baba T, Hagiwara A, Ogata K, Yamamoto S (2009) Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (Lond) 23(2):304–308

    Article  CAS  Google Scholar 

  22. Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, Reichel E, Duker JS (2006) Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol 142(6):945–952

    Article  PubMed  Google Scholar 

  23. Matsuo T, Morimoto N (2007) Visual acuity and perimacular retinal layers detected by optical coherence tomography in patients with retinitis pigmentosa. Br J Ophthalmol 91(7):888–890

    Article  PubMed  Google Scholar 

  24. Hood DC, Odel JG, Chen CS, Winn BJ (2003) The multifocal electroretinogram. J Neuroophthalmol 23(3):225–235

    Article  PubMed  Google Scholar 

  25. Seeliger M, Kretschmann U, Apfelstedt-Sylla E, Ruther K, Zrenner E (1998) Multifocal electroretinography in retinitis pigmentosa. Am J Ophthalmol 125(2):214–226

    Article  PubMed  CAS  Google Scholar 

  26. Hood DC, Holopigian K, Greenstein V, Seiple W, Li J, Sutter EE, Carr RE (1998) Assessment of local retinal function in patients with retinitis pigmentosa using the multi-focal ERG technique. Vision Res 38(1):163–179

    Article  PubMed  CAS  Google Scholar 

  27. Gränse L, Ponjavic V, Andréasson S (2004) Full-field ERG, multifocal ERG and multifocal VEP in patients with retinitis pigmentosa and residual central visual fields. Acta Ophthalmol Scand 82(6):701–706

    Article  PubMed  Google Scholar 

  28. Nagy D, Schönfisch B, Zrenner E, Jägle H (2008) Long-term follow-up of retinitis pigmentosa patients with multifocal electroretinography. Invest Ophthalmol Vis Sci 49(10):4664–4671

    Article  PubMed  Google Scholar 

  29. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77

    Article  PubMed  CAS  Google Scholar 

  30. Pons ME, Garcia-Valenzuela E (2005) Redefining the limit of the outer retina in optical coherence tomography scans. Ophthalmology 112(6):1079–1085

    Article  PubMed  Google Scholar 

  31. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116(1):1–11

    Article  PubMed  Google Scholar 

  32. Andréasson SO, Sandberg MA, Berson EL (1998) Narrow-band filtering for monitoring low-amplitude cone electroretinograms in retinitis pigmentosa. Am J Ophthalmol 105(5):500–503

    Google Scholar 

  33. Gerth C, Wright T, Heon E, Westall CA (2007) Assessment of central retinal function in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 48(3):1312–1318

    Article  PubMed  Google Scholar 

  34. Vámos R, Tatrai E, Nemeth J, Holder GE, DeBuc DC, Somfai GM (2011) The structure and function of the macula in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(11):8425–8432

    Article  PubMed  Google Scholar 

  35. Wen Y, Klein M, Hood DC, Birch DG (2012) Relationships among multifocal electroretinogram amplitude, visual field sensitivity, and SD-OCT receptor layer thickness in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 53(2):833–840

    Article  PubMed  Google Scholar 

  36. Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG (2011) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(1):101–108

    Article  PubMed  Google Scholar 

  37. Jacobson SG, Roman AJ, Aleman TS, Sumaroka A, Herrera W, Windsor EA, Atkinson LA, Schwartz SB, Steinberg JD, Cideciyan AV (2010) Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci 51(2):1079–1085

    Article  PubMed  Google Scholar 

  38. Chang LK, Koizumi H, Spaide RF (2008) Disruption of the photoreceptor inner segment-outer segment junction in eyes with macular holes. Retina 28(7):969–975

    Google Scholar 

  39. Wang NK, Chou CL, Lima LH, Cella W, Tosi J, Yannuzzi LA, Tsang SH (2009) Fundus autofluorescence in cone dystrophy. Doc Ophthalmol 119(2):141–144

    Article  PubMed  CAS  Google Scholar 

  40. Sugita T, Kondo M, Piao CH, Ito Y, Terasaki H (2008) Correlation between macular volume and focal macular electroretinogram in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 49(8):3551–3558

    Article  PubMed  Google Scholar 

  41. Jacobson SG, Cideciyan AV, Iannaccone A, Weleber RG, Fishman GA, Maguire AM, Affatigato LM, Bennett J, Pierce EA, Danciger M, Farber DB, Stone EM (2000) Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(7):1898–1908

    PubMed  CAS  Google Scholar 

  42. Jacobson SG, Cideciyan AV, Huang Y, Hanna DB, Freund CL, Affatigato LM, Carr RE, Zack DJ, Stone EM, McInnes RR (1998) Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene. Invest Ophthalmol Vis Sci 39(12):2417–2426

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hoon Ohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, C.H., Park, T.K. & Ohn, YH. Association between multifocal electroretinograms, optical coherence tomography and central visual sensitivity in advanced retinitis pigmentosa. Doc Ophthalmol 125, 113–122 (2012). https://doi.org/10.1007/s10633-012-9342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9342-1

Keywords

Navigation