Skip to main content

Advertisement

Log in

The role of the ERG in the diagnosis and treatment of Age-Related Macular Degeneration

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is affecting an increasing number of people, with 2.95 million people estimated to be affected in the USA by 2020. Possible preventive agents, such as vitamins and supplements have been studied and new treatment options for AMD have been developed in recent years. What role does electrophysiology play as a sensitive outcome measure? The most commonly used tests are the full-field electroretinogram (ffERG) and the multifocal ERG (mfERG). Test results from patients with AMD and reduced central vision need special attention in respect to fixation pattern, age-matched control data, and retinal luminance. Advantages, disadvantages and limitations of techniques will be considered, together with a review of published studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99:933–943

    CAS  PubMed  Google Scholar 

  2. Brown GC, Brown MM, Campanella J, Beauchamp GR (2005) The cost-utility of photodynamic therapy in eyes with neovascular macular degeneration – a value-based reappraisal with 5-year data. Am J Ophthalmol 140:679–687

    PubMed  Google Scholar 

  3. Coleman AL, Yu F (2008) Eye-related medicare costs for patients with age-related macular degeneration from 1995 to 1999. Ophthalmology 115:18–25

    Article  PubMed  Google Scholar 

  4. Klein R, Klein BE, Jensen SC, Meuer SM (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104:7–21

    CAS  PubMed  Google Scholar 

  5. Bressler NM, Munoz B, Maguire MG et al (1995) Five-year incidence and disappearance of drusen and retinal pigment epithelial abnormalities. Waterman study. Arch Ophthalmol 113:301–308

    CAS  PubMed  Google Scholar 

  6. Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413

    Article  CAS  PubMed  Google Scholar 

  7. Wong T, Chakravarthy U, Klein R et al (2008) The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology 115:116–126

    Article  PubMed  Google Scholar 

  8. Schmidt-Erfurth UM, Pruente C (2007) Management of neovascular age-related macular degeneration. Prog Retin Eye Res 26:437–451

    Article  CAS  PubMed  Google Scholar 

  9. Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508

    Article  PubMed  Google Scholar 

  10. Ferris FL 3rd, Kassoff A, Bresnick GH, Bailey I (1982) New visual acuity charts for clinical research. Am J Ophthalmol 94:91–96

    PubMed  Google Scholar 

  11. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576

    CAS  PubMed  Google Scholar 

  12. Weleber RG (1981) The effect of age on human cone and rod Ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 20:392–399

    CAS  PubMed  Google Scholar 

  13. Wright CE, Williams DE, Drasdo N, Harding GFA (1985) The influence of age on the electroretinogram and visual evoked potential. Doc Ophthalmol 59:365–384

    Article  CAS  PubMed  Google Scholar 

  14. Seeliger MW, Kretschmann UH, Apfelstaedt-Sylla E, Zrenner E (1998) Implicit time topography of multifocal electroretinograms. Invest Ophthalmol Vis Sci 39:718–723

    CAS  PubMed  Google Scholar 

  15. Fortune B, Johnson CA (2002) The decline of photopic multifocal electroretinogram responses with age is primarily due to pre-retinal optical factors. J Opt Soc Am A 19:173–184

    Article  Google Scholar 

  16. Gerth C, Garcia SM, Ma L et al (2002) Multifocal electroretinogram: age-related changes for different luminance levels. Graefes Arch Clin Exp Ophthalmol 240:202–208

    Article  PubMed  Google Scholar 

  17. Tzekov RT, Gerth C, Werner JS (2004) Senescence of human multifocal electroretinogram components: a localized approach. Graefes Arch Clin Exp Ophthalmol 242:549–560

    Article  PubMed  Google Scholar 

  18. Jackson GR, McGwin G Jr, Phillips JM et al (2004) Impact of aging and age-related maculopathy on activation of the a-wave of the rod-mediated electroretinogram. Invest Ophthalmol Vis Sci 45:3271–3278

    Article  PubMed  Google Scholar 

  19. Hogg RE, Chakravarthy U (2006) Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res 25:249–276

    Article  CAS  PubMed  Google Scholar 

  20. Medeiros NE, Curcio CA (2001) Preservation of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:795–803

    CAS  PubMed  Google Scholar 

  21. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  22. Jackson GR, McGwin G Jr, Phillips JM et al (2006) Impact of aging and age-related maculopathy on inactivation of the a-wave of the rod-mediated electroretinogram. Vision Res 46:1422–1431

    Article  PubMed  Google Scholar 

  23. Feigl B, Brown B, Lovie-Kitchin J, Swann P (2005) Cone- and rod-mediated multifocal electroretinogram in early age-related maculopathy. Eye 19:431–441

    Article  CAS  PubMed  Google Scholar 

  24. Chen C, Wu L, Wu D et al (2004) The local cone and rod system function in early age-related macular degeneration. Doc Ophthalmol 109:1–8

    PubMed  Google Scholar 

  25. Ronan S, Nusinowitz S, Swaroop A, Heckenlively JR (2006) Senile panretinal cone dysfunction in age-related macular degeneration (AMD): a report of 52 AMD patients compared to age-matched controls. Trans Am Ophthalmol Soc 104:232–240

    PubMed  Google Scholar 

  26. Walter P, Widder RA, Luke C et al (1999) Electrophysiological abnormalities in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:962–968

    Article  CAS  PubMed  Google Scholar 

  27. Sandberg MA, Miller S, Gaudio AR (1993) Foveal cone ERGs in fellow eyes of patients with unilateral neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 34:3477–3480

    CAS  PubMed  Google Scholar 

  28. Falsini B, Serrao S, Fadda A et al (1999) Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefes Arch Clin Exp Ophthalmol 237:193–200

    Article  CAS  PubMed  Google Scholar 

  29. Gerth C, Hauser D, Delahunt PB et al (2003) Assessment of multifocal electroretinogram abnormalities and their relation to morphologic characteristics in patients with large drusen. Arch Ophthalmol 121:1404–1414

    Article  PubMed  Google Scholar 

  30. Takiura K, Yuzawa M, Miyasaka S (2001) Multifocal electroretinogram in patients with soft drusen in the macula. Invest Ophthalmol Vis Sci 42:S73

    Google Scholar 

  31. Gerth C, Delahunt PB, Alam S et al (2006) Cone-mediated multifocal electroretinogram in age-related macular degeneration: progression over a long-term follow-up. Arch Ophthalmol 124:345–352

    Article  PubMed  Google Scholar 

  32. Jurklies B, Weismann M, Husing J et al (2002) Monitoring retinal function in neovascular maculopathy using multifocal electroretinography—early and long-term correlation with clinical findings. Graefes Arch Clin Exp Ophthalmol 240:244–264

    Article  CAS  PubMed  Google Scholar 

  33. Neveu MM, Tufail A, Dowler JG, Holder GE (2006) A comparison of pattern and multifocal electroretinography in the evaluation of age-related macular degeneration and its treatment with photodynamic therapy. Doc Ophthalmol 113:71–81

    Article  PubMed  Google Scholar 

  34. Bressler NM, Bressler SB, Haynes LA et al (2005) Verteporfin therapy for subfoveal choroidal neovascularization in age-related macular degeneration: four-year results of an open-label extension of 2 randomized clinical trials: TAP Report No. 7. Arch Ophthalmol 123:1283–1285

    Google Scholar 

  35. Tzekov R, Lin T, Zhang KM et al (2006) Ocular changes after photodynamic therapy. Invest Ophthalmol Vis Sci 47:377–385

    Article  PubMed  Google Scholar 

  36. Palmowski AM, Allgayer R, Heinemann-Vernaleken B, Ruprecht KW (2002) Influence of photodynamic therapy in choroidal neovascularization on focal retinal function assessed with the multifocal electroretinogram and perimetry. Ophthalmology 109:1788–1792

    Article  PubMed  Google Scholar 

  37. Moschos MM, Panayotidis D, Theodossiadis G, Moschos M (2004) Assessment of macular function by multifocal electroretinogram in age-related macular degeneration before and after photodynamic therapy. J Fr Ophtalmol 27:1001–1006

    Article  CAS  PubMed  Google Scholar 

  38. Ruther K, Breidenbach K, Schwartz R et al (2003) [Testing central retinal function with multifocal electroretinography before and after photodynamic therapy]. Ophthalmologe 100:459–464

    CAS  PubMed  Google Scholar 

  39. Mackay AM, Brown MC, Grierson I, Harding SP (2008) Multifocal electroretinography as a predictor of maintenance of vision after photodynamic therapy for neovascular age-related macular degeneration. Doc Ophthalmol 116:13–18

    Article  PubMed  Google Scholar 

  40. Oner A, Karakucuk S, Mirza E, Erkilic K (2005) The changes of pattern electroretinography at the early stage of photodynamic therapy. Doc Ophthalmol 111:107–112

    Article  PubMed  Google Scholar 

  41. Shahar J, Avery RL, Heilweil G et al (2006) Electrophysiologic and retinal penetration studies following intravitreal injection of bevacizumab (Avastin). Retina 26:262–269

    Article  PubMed  Google Scholar 

  42. Manzano RP, Peyman GA, Khan P, Kivilcim M (2006) Testing intravitreal toxicity of bevacizumab (Avastin). Retina 26:257–261

    Article  PubMed  Google Scholar 

  43. Heiduschka P, Julien S, Hofmeister S et al (2008) Bevacizumab (Avastin) does not harm retinal function after intravitreal injection as shown by electroretinography in adult mice. Retina 28:46–55

    Article  PubMed  Google Scholar 

  44. Maturi RK, Bleau LA, Wilson DL (2006) Electrophysiologic findings after intravitreal bevacizumab (Avastin) treatment. Retina 26:270–274

    Article  PubMed  Google Scholar 

  45. Moschos MM, Brouzas D, Apostolopoulos M et al (2007) Intravitreal use of bevacizumab (Avastin) for choroidal neovascularization due to ARMD: a preliminary multifocal-ERG and OCT study. Multifocal-ERG after use of bevacizumab in ARMD. Doc Ophthalmol 114:37–44

    Article  PubMed  Google Scholar 

  46. Luke C, Aisenbrey S, Luke M et al (2001) Electrophysiological changes after 360 degrees retinotomy and macular translocation for subfoveal choroidal neovascularisation in age related macular degeneration. Br J Ophthalmol 85:928–932

    Article  CAS  PubMed  Google Scholar 

  47. Terasaki H, Miyake Y, Suzuki T et al (2002) Change in full-field ERGs after macular translocation surgery with 360 degrees retinotomy. Invest Ophthalmol Vis Sci 43:452–457

    PubMed  Google Scholar 

  48. Terasaki H, Ishikawa K, Niwa Y et al (2004) Changes in focal macular ERGs after macular translocation surgery with 360 degrees retinotomy. Invest Ophthalmol Vis Sci 45:567–573

    Article  PubMed  Google Scholar 

  49. Owsley C, Jackson GR, Cideciyan AV et al (2000) Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci 41:267–273

    CAS  PubMed  Google Scholar 

  50. Feigl B, Brown B, Lovie-Kitchin J, Swann P (2006) The rod-mediated multifocal electroretinogram in aging and in early age-related maculopathy. Curr Eye Res 31:635–644

    Article  PubMed  Google Scholar 

  51. Sutter EE, Tran D (1992) The field topography of ERG components in man–I. The photopic luminance response. Vision Res 32:433–446

    Article  CAS  PubMed  Google Scholar 

  52. Sutter EE (1991) The fast m-transform: a fast computation of cross-correlations with binary m-sequences. Soc Indust Appl Math 20:686–694

    Google Scholar 

  53. Hood DC, Li J (1997) A technique for measuring individual multifocal ERG records. Opt Soc Am Trends Opt Photonics 11:33–41

    Google Scholar 

  54. Hood DC, Bach M, Brigell M et al (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116:1–11

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Carole Panton for editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Gerth.

Additional information

This paper was presented at the 45th Annual Symposium of the International Society for Clinical Electrophysiology of Vision (ISCEV) in Hyderabad, India, August 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerth, C. The role of the ERG in the diagnosis and treatment of Age-Related Macular Degeneration. Doc Ophthalmol 118, 63–68 (2009). https://doi.org/10.1007/s10633-008-9133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-008-9133-x

Keywords

Navigation