Documenta Ophthalmologica

, Volume 116, Issue 2, pp 75–77 | Cite as

Imaging and the perspective of clinical electrophysiology

  • Ulrich Kellner

Clinical electrophysiology allows a detailed analysis of retinal function in various disorders. When for decades the morphological examination of the retina was limited to ophthalmoscopy and fluorescein angiography, electrophysiological techniques allowed detection of retinal abnormalities in morphologically “normal” retina: e.g. cone dystrophies with the full-field ERG, early stages of macular dystrophies with the pattern ERG (PERG) or multifocal ERG (mfERG), early stages of chloroquine retinopathy with the mfERG, non-manifesting carriers of Best disease with the EOG or retinal ganglion cell damage in autosomal dominant optic atrophy with the VEP.

In recent years, new techniques for the evaluation of retinal morphology have been introduced in clinical practice. Optical coherence tomography (OCT) within the last 15 years has evolved from frequency domain techniques to the fourth generation with spectral domain techniques, and further development with even higher resolution and...


Clinical electrophysiology Retinal imaging 


  1. 1.
    Drexler W, Fujimoto JG (2007) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. doi: 10.1016/j.preteyeres.2007.07.005 PubMedGoogle Scholar
  2. 2.
    Catier A, Tadayoni R, Paques M, Erginay A, Haouchine B, Gaudric A, Massin P (2005) Characterization of macular edema from various etiologies by optical coherence tomography. Am J Ophthalmol 140:200–206PubMedGoogle Scholar
  3. 3.
    Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729PubMedGoogle Scholar
  4. 4.
    Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47:3556–3564PubMedCrossRefGoogle Scholar
  5. 5.
    Wabbels B, Demmler A, Paunescu K, Wegscheider E, Preising MN, Lorenz B (2006) Fundus autofluorescence in children and teenagers with hereditary retinal diseases. Graefes Arch Clin Exp Ophthalmol 244:36–45PubMedCrossRefGoogle Scholar
  6. 6.
    Weinberger AW, Lappas A, Kirschkamp T, Mazinani BA, Huth JK, Mohammadi B, Walter P (2006) Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci 47:3098–3108PubMedCrossRefGoogle Scholar
  7. 7.
    Lubinski W, Goslawski W, Penkala K, Drobek-Slowik M, Karczewicz D (2007) A 43-year-old man with reduced visual acuity and normal fundus: occult macular dystrophy-case report. Doc Ophthalmol. doi: 10.1007/s10633-007-9086-5 PubMedGoogle Scholar
  8. 8.
    Poloschek CM, Hansen LL, Bach M (2007) Annular fundus autofluorescence abnormality in a case of macular dystrophy. Doc Ophthalmol. doi: 10.1007/s10633-007-9097-2 PubMedGoogle Scholar
  9. 9.
    Renner AB, Kellner U, Fiebig B, Cropp E, Foerster MH, Weber BH (2007) ERG variability in X-linked congenital retinoschisis patients with mutations in the RS1 gene and the diagnostic importance of fundus autofluorescence and OCT. Doc Ophthalmol. doi: 10.1007/s10633-007-9094-5 PubMedGoogle Scholar
  10. 10.
    Wabbels B, Preising MN, Kretschmann U, Demmler A, Lorenz B (2006) Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 244:1453–1466CrossRefGoogle Scholar
  11. 11.
    Altintas O, Iseri P, Ozkan B, Caglar Y (2007) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol. doi: 10.1007/s10633-007-9091-8 PubMedGoogle Scholar
  12. 12.
    Jacobson SG, Cideciyan AV, Aleman TS, Pianta MJ, Sumaroka A, Schwartz SB, Smilko EE, Milam AH, Sheffield VC, Stone EM (2003) Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet 12:1073–1078PubMedCrossRefGoogle Scholar
  13. 13.
    Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111:1585–1594PubMedCrossRefGoogle Scholar
  14. 14.
    Robson AG, Michaelides M, Saihan Z, Bird AC, Webster AR, Moore AT, Fitzke FW, Holder GE (2007) Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol. doi: 10.1007/s10633-007-9087-4 PubMedGoogle Scholar
  15. 15.
    Kellner U, Kellner S, Weinitz S (2008) Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol. doi: 10.1007/s10633-007-9105-6 Google Scholar
  16. 16.
    Shetty R, Pai SA, Vincent A, Shetty N, Narayana KM, Sinha B, Shetty BK (2007) Electrophysiological and structural assessment of the central retina following intravitreal injection of bevacizumab for treatment of macular edema. Doc Ophthalmol. doi: 10.1007/s10633-007-9090-9 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Retina ScienceBonnGermany
  2. 2.AugenZentrum SiegburgSiegburgGermany

Personalised recommendations