Skip to main content

Advertisement

Log in

Multifocal electroretinographical changes in monkeys with experimental ocular hypertension: a longitudinal study

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose To study the time course of changes in the multifocal electroretinograms (mfERG) in monkeys with experimental ocular hypertension (OHT). Methods The mfERGs were recorded in 12 eyes out of 6 monkeys. Two baseline measurements were used to quantify the reproducibility, the inter-ocular and the inter-individual variability of the ERG signals. Thereafter, the trabeculum of one eye of each animal was laser-coagulated in one to three sessions to induce OHT. ERG measurements were repeated regularly in a period of 18 months and the changes in ERG waveforms were quantified. Results All animals displayed OHT (between 20 and 50 mmHg) in the laser-coagulated eyes. An ERG change was defined as the sum of differences during the first 90 ms between the laser-coagulated eye and the same eye before laser coagulation and between the laser-coagulated eye and the non-treated fellow eye. Three animals displayed significant changes for nearly all retinal areas and all stimulus conditions. The three remaining animals displayed significant changes only in one comparison, indicating very mild changes. The data indicate that a high stimulus contrast is more sensitive to detect changes, probably because of a better signal-to-noise ratio. Moreover, the comparisons with the fellow eye are more sensitive to detect changes than comparisons with the measurements before laser-coagulation. Conclusions OHT does not always lead to ERG changes. Comparisons with fellow eyes using high contrast stimuli are more sensitive to detect changes related to OHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IOP:

Intraocular pressure

OHT:

Ocular hypertension

References

  1. Bach M, Hiss P, Rover J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322

    Article  PubMed  CAS  Google Scholar 

  2. Hood DC, Greenstein V, Holopigian K, Bauer R, Firoz B, Liebman JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    PubMed  CAS  Google Scholar 

  3. Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11:S41–S49

    PubMed  Google Scholar 

  4. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522

    PubMed  CAS  Google Scholar 

  5. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561

    Article  PubMed  CAS  Google Scholar 

  6. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma:removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    PubMed  CAS  Google Scholar 

  7. Graham SL, Drance SM, Chauhan BC, Swindale NV, Hnik P, Mikelberg FS, Douglas GR (1996) Comparison of psychophysical and electrophysiological testing in early glaucoma. Invest Ophthalmol Vis Sci 37:2651–2662

    PubMed  CAS  Google Scholar 

  8. Sutter EE, Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vision Res 32:433–446

    Article  PubMed  CAS  Google Scholar 

  9. Bearse MA, Sutter EE, Sim D, Stamper R (2005) Glaucomatous dysfunction revealed in higher order components of the electroretinogram. Vision Science and its Application, OSA Technical Digest Series, vol 1, pp 104–107

  10. Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith III EL, Robson JG, Barnes G (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Doc Ophthalmol 100:231–251

    Article  CAS  Google Scholar 

  11. Palmowski AM, Allgayer R, Heinemann-Vemaleken B (2000) The multifocal ERG in open angle glaucoma – A comparison of high and low contrast recordings in high- and low-tension open angle glaucoma. Doc Ophthalmol 101:35–49

    Article  PubMed  CAS  Google Scholar 

  12. Hare WA, Ton H, Ruiz G, Feldmann B, Wijono M, WoldeMussie E (2001) Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. Invest Ophthalmol Vis Sci 42:127–136

    PubMed  CAS  Google Scholar 

  13. Fortune B, Bearse MA, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647

    PubMed  Google Scholar 

  14. Raz D, Seeliger MW, Geva AB, Percicot CL, Lambrou GN, Ofri R (2002) The effect of contrast and luminance on mfERG responses in a monkey model of glaucoma. Invest Ophthalmol Vis Sci 43:2027–2035

    PubMed  Google Scholar 

  15. Raz D, Perlman I, Percicot CL, Lambrou GN, Ofri R (2003) Functional damage to inner and outer retinal cells in experimental glaucoma. Invest Ophthalmol Vis Sci 44:3675–3684

    Article  PubMed  Google Scholar 

  16. Marx MS, Podos SM, Bodis-Wollner I, Lee P-Y, Wang R-F, Severin C (1988) Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP. Exp Eye Res 46:173–184

    Article  PubMed  CAS  Google Scholar 

  17. Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL III, Carter C (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125

    Article  PubMed  Google Scholar 

  18. Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ (2006) Effect of experimental glaucoma in primates on oscillatory potentialy of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47:753–767

    Article  PubMed  Google Scholar 

  19. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL III (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    PubMed  CAS  Google Scholar 

  20. Fortune B, Bui BV, Cull G, Wang L, Cioffi GA (2004) Inter-ocular and inter-session reliability of the electroretinogram photopicnegative response (PhNR) in non-human primates. Exp Eye Res 78:83–93

    Article  PubMed  CAS  Google Scholar 

  21. Bui BV, Fortune B, Cull G, Wang L, Cioffi GA (2003) Baseline characteristics of the transient pattern electroretinogram in non-human primates: inter-ocular and inter-session variability. Exp Eye Res 77:555–566

    Article  PubMed  CAS  Google Scholar 

  22. Hood DC, Greenstein V, Frishman LJ, Holopigian K, Viswanathan S, Seiple W, Ahmed J, Robson JG (1999) Identifying inner retinal contributions to the human multifocal ERG. Vision Res 39:2285–2291

    Article  PubMed  CAS  Google Scholar 

  23. Polska EA, Doelemeyer A, Unterhuber A, Schmetterer L, Drexler W, Lambrou GN (2004) Early morphological changes in non-human primate eyes with laser-induced ocular hypertension assessed with ultrahigh-resolution optical coherence tomography, scanning laser polarimetry and scanning laser tomography. Invest Ophthalmol Vis Sci Suppl 44:2176

    Google Scholar 

  24. Doelemeyer A, Polska EA, Schmid P, Unterhuber A, Sattman H, Hermann B, Lambrou GN, Drexler W (2004) Correlation of in vivo ultrahigh-resolution optical coherence tomography with histological sections in non-human primate eyes. Invest Ophthalmol Vis Sci Suppl 44:2202

    Google Scholar 

  25. Polska EA, Doelemeyer A, Kremers J, Unterhuber A, Schmetterer L, Drexler W, Lambrou GN (2005) Morphological and functional assessment of early changes in the macular region and the optic nerve head of ocular hypertensive non-human primates. Invest Ophthalmol Vis Sci Suppl 45:3512

    Google Scholar 

  26. Kommomen B, Hyvätti E, Dawson WW (2007) Propofol modulates inner retina function in beagles. Vet Ophthalmol 10:76–80

    Article  Google Scholar 

  27. Tanskanen P, Kylmä T, Kommomen B, Karhunen U (1996) Propofol influences the electroretinogram to a lesser degree than thiopentone. Acta Anaesthesiol Scand 40:480–485

    PubMed  CAS  Google Scholar 

  28. Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436

    Article  PubMed  CAS  Google Scholar 

  29. Zhou W, Rangaswamy NV, Ktonas P, Frishman LJ (2007) Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vision Res 47:2021–2036

    Article  PubMed  Google Scholar 

  30. Murray IJ, Parry NRA, Kremers J, Stepien MW, Schild A (2004) Photoreceptor topography and cone specific electroretinograms. Vis Neurosci 21:231–235

    Article  PubMed  CAS  Google Scholar 

  31. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  PubMed  CAS  Google Scholar 

  32. Goodchild AK, Ghosh KK, Martin PR (1996) Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J Comp Neurol 366:55–75

    Article  PubMed  CAS  Google Scholar 

  33. Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532

    Article  PubMed  CAS  Google Scholar 

  34. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Céline Cojean, Isabelle Questel and Emanuel Faure for technical support, Evelyn Rauscher for organizational support and Leopold Schmetterer and Michael Bach for their comments on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kremers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremers, J., Doelemeyer, A., Polska, E.A. et al. Multifocal electroretinographical changes in monkeys with experimental ocular hypertension: a longitudinal study. Doc Ophthalmol 117, 47–63 (2008). https://doi.org/10.1007/s10633-007-9102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9102-9

Keywords

Navigation