Documenta Ophthalmologica

, Volume 115, Issue 3, pp 145–153 | Cite as

The mouse pattern electroretinogram

Original Research Article


Mouse models of optic nerve disease such as glaucoma, optic neuritis, ischemic optic neuropathy, and mitochondrial optic neuropathy are being developed at increasing rate to investigate specific pathophysiological mechanisms and the effect of neuroprotective treatments. The use of these models may be greatly enhanced by the availability of non-invasive methods able to monitor retinal ganglion cell (RGC) function longitudinally such as the Pattern Electroretinogram (PERG). While the use of the PERG as a tool to probe inner retina function in mammals is known since 25 years, relatively less information is available for the mouse. Here, the PERG technique and the main applications in the mouse are reviewed.


Mouse Pattern electroretinogram Retinal ganglion cells Mouse models 



Financial support: NIH RO3 EY016322, NIH RO1 EY014957, NIH center grant P30-EY14801, unrestricted grant to the University of Miami from Research to Prevent Blindness, Inc.


  1. 1.
    Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568PubMedCrossRefGoogle Scholar
  2. 2.
    Riggs LA (1986) Electroretinography. Vision Res 26(9):1443–1459PubMedCrossRefGoogle Scholar
  3. 3.
    Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955CrossRefGoogle Scholar
  4. 4.
    Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  5. 5.
    Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18PubMedCrossRefGoogle Scholar
  7. 7.
    Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168PubMedCrossRefGoogle Scholar
  8. 8.
    Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMedGoogle Scholar
  9. 9.
    Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302PubMedCrossRefGoogle Scholar
  10. 10.
    Korth M, Rix R (1987) The pattern ERG in response to colored stimuli. Doc Ophthalmol 65(1):71–77PubMedCrossRefGoogle Scholar
  11. 11.
    Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884PubMedGoogle Scholar
  12. 12.
    Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871PubMedGoogle Scholar
  13. 13.
    Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189PubMedCrossRefGoogle Scholar
  14. 14.
    Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740PubMedCrossRefGoogle Scholar
  15. 15.
    Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987PubMedCrossRefGoogle Scholar
  16. 16.
    Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401PubMedCrossRefGoogle Scholar
  17. 17.
    Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967PubMedGoogle Scholar
  18. 18.
    Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951PubMedGoogle Scholar
  19. 19.
    Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162PubMedGoogle Scholar
  20. 20.
    Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39PubMedCrossRefGoogle Scholar
  21. 21.
    Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751CrossRefGoogle Scholar
  22. 22.
    Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420Google Scholar
  23. 23.
    Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493PubMedCrossRefGoogle Scholar
  24. 24.
    Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425PubMedCrossRefGoogle Scholar
  25. 25.
    Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546PubMedCrossRefGoogle Scholar
  26. 26.
    Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584PubMedCrossRefGoogle Scholar
  27. 27.
    Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959PubMedCrossRefGoogle Scholar
  28. 28.
    Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543PubMedCrossRefGoogle Scholar
  29. 29.
    Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94PubMedGoogle Scholar
  30. 30.
    Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120PubMedGoogle Scholar
  31. 31.
    Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176PubMedGoogle Scholar
  32. 32.
    Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262PubMedCrossRefGoogle Scholar
  33. 33.
    Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756PubMedGoogle Scholar
  34. 34.
    Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24Google Scholar
  35. 35.
    Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565PubMedGoogle Scholar
  36. 36.
    Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189PubMedGoogle Scholar
  37. 37.
    Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731PubMedCrossRefGoogle Scholar
  38. 38.
    Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212PubMedGoogle Scholar
  39. 39.
    Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye 18(11):1066–1074PubMedCrossRefGoogle Scholar
  40. 40.
    Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163PubMedCrossRefGoogle Scholar
  41. 41.
    Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30PubMedCrossRefGoogle Scholar
  42. 42.
    Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370PubMedCrossRefGoogle Scholar
  43. 43.
    Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31PubMedCrossRefGoogle Scholar
  44. 44.
    Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867PubMedCrossRefGoogle Scholar
  45. 45.
    Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081PubMedCrossRefGoogle Scholar
  46. 46.
    Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458PubMedCrossRefGoogle Scholar
  47. 47.
    Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726PubMedCrossRefGoogle Scholar
  48. 48.
    Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705Google Scholar
  49. 49.
    Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334PubMedCrossRefGoogle Scholar
  50. 50.
    Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95PubMedGoogle Scholar
  51. 51.
    Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMedGoogle Scholar
  52. 52.
    Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMedCrossRefGoogle Scholar
  53. 53.
    Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857PubMedCrossRefGoogle Scholar
  54. 54.
    Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574PubMedCrossRefGoogle Scholar
  55. 55.
    Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418PubMedCrossRefGoogle Scholar
  56. 56.
    Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616PubMedCrossRefGoogle Scholar
  57. 57.
    Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407PubMedCrossRefGoogle Scholar
  58. 58.
    Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500Google Scholar
  59. 59.
    Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82PubMedCrossRefGoogle Scholar
  60. 60.
    Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRefGoogle Scholar
  61. 61.
    Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47PubMedCrossRefGoogle Scholar
  62. 62.
    Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187PubMedCrossRefGoogle Scholar
  63. 63.
    Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67PubMedCrossRefGoogle Scholar
  64. 64.
    Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264PubMedGoogle Scholar
  65. 65.
    Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313Google Scholar
  66. 66.
    Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030PubMedCrossRefGoogle Scholar
  67. 67.
    Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745PubMedCrossRefGoogle Scholar
  68. 68.
    Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10PubMedCrossRefGoogle Scholar
  69. 69.
    Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRefGoogle Scholar
  70. 70.
    John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMedGoogle Scholar
  71. 71.
    Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMedGoogle Scholar
  72. 72.
    Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210Google Scholar
  73. 73.
    Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005Google Scholar
  74. 74.
    Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRefGoogle Scholar
  75. 75.
    Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362PubMedCrossRefGoogle Scholar
  76. 76.
    Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations