Skip to main content
Log in

ERG Components of Negative Polarity from the Inner Retina and the Optic Nerve Response

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

ERG components of negative polarity in the light-adapted and in the dark-adapted inner retina are reviewed from a clinical perspective and include consideration of experimental research. Field potentials are inherently complex including summating contributions from specialized neurons as well as from glial elements. This property applies to the PERG, PhNR and to the STR. Experimental research can contribute to identifying the sites/cells of origins i.e. by determining depth profiles and by pharmacological manipulation. Intraretinal microelectrode-studies and pharmacological dissection of light-evoked responses have elucidated the origin of field potentials from the retinal pigment epithelium to the retinal ganglion cells. Thresholds for dark-adapted response components have been compared. Attenuation of the STR by anesthesia was found in cats in vivo when compared to threshold intensities used in isolated eye preparations in vitro, suggestive of depression of inner retinal activity by anesthetics. Evidence has been presented for antidromically elicited retinal responses of negative polarity that resemble the STR and summate with the light-evoked retinal response. This observation supports the notion that negative field potentials and components as recorded in the vitreous and at the cornea receive contributions from retinal ganglion cells. The weight of this contribution appears to vary among species, at least concerning the STR. The ocular negative reponses from the inner retina are compared to cortical excitatory mechanisms generating negativity in the baseline of the EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GA Fishman DG Birch GE Holder MG Brigell (2001) Electrophysiologic testing in disorders of the retina, optic nerve and visual pathway. 2nd ed. Ophthalmology monographs The foundation of the American Academy of Ophthalmology San Francisco

    Google Scholar 

  2. P Gouras G Niemeyer (2005) Electroretinography, Disorders of visual processing. G Celesia (Eds) Handbook of Clinical Neurophysiology NumberInSeriesVol. 5 Elsevier BV Edinburgh 87–97

    Google Scholar 

  3. Principles and practice of clinical electrophysiology of vision. JR Heckenlively and GB Arden, eds. Mosby Year book, St Louis, 1991.

  4. PA Sieving LJ Frishman RH Steinberg (1986) ArticleTitleScotopic threshold response of proximal retina in cat J Neurophysiol 56 1049–1061 Occurrence Handle1:STN:280:BiiD28%2FgtVA%3D Occurrence Handle3783228

    CAS  PubMed  Google Scholar 

  5. M Kuze G Niemeyer (2003) ArticleTitleAbsolute sensitivity of the electroretinogram and of the optic nerve action potential in the perfused feline eye Jpn J Ophthalmol 47 362–367 Occurrence Handle10.1016/S0021-5155(03)00079-0 Occurrence Handle12842204

    Article  PubMed  Google Scholar 

  6. Jost K. Vergleich der Lichtreizschwelle der Elektroretinogramms (ERG) des Menschen, der anästhesierten Katze und des perfundierten Katzenauges. MD thesis Faculty of Medicine, University Zurich, 2003.

  7. RA Bush KW Hawks PA Sieving (1995) ArticleTitlePreservation of inner retinal responses in the aged royal college of surgeon’s rat Invest Ophthalmol Vis Sci 36 2054–2062 Occurrence Handle1:STN:280:ByqA1cnktVE%3D Occurrence Handle7657544

    CAS  PubMed  Google Scholar 

  8. JG Robson LJ Frishman (1999) ArticleTitleDissecting the dark-adapted electroretinogram Documenta Ophthalmol 3–4 187–215

    Google Scholar 

  9. PA Sieving C Nino (1988) ArticleTitleScotopic threshold response (STR) of the human electroretinogram Invest Ophthalmol Vis Sci 29 1608–1614 Occurrence Handle1:STN:280:BiaD3s3pslM%3D Occurrence Handle3182195

    CAS  PubMed  Google Scholar 

  10. GW Aylward Veagan FA Billson (1989) ArticleTitleThe scotopic threshold response in man Clin Vision Sci 4 373–377

    Google Scholar 

  11. Niemeyer G, Jost K. Comparison of scotopic threshold response with optic nerve response and electrically driven retinal field potentials in vitro. Invest Opthalmol Vis Sci. 2002 (Suppl) 72:# 1815.

  12. GB Arden Veagan (1983) ArticleTitleElectroretinograms evoked in man by local uniform or patterned stimulation J Physiol 341 85–104 Occurrence Handle1:STN:280:BiuD3M%2Fks1E%3D Occurrence Handle6620193

    CAS  PubMed  Google Scholar 

  13. G Holder (2001) ArticleTitlethe pattern electroretinogram and an integrated approach to visual pathway diagnosis Progr Retin Eye Res 20 531–561 Occurrence Handle1:STN:280:DC%2BD3MzitVKntQ%3D%3D

    CAS  Google Scholar 

  14. GE Holder AG Robson CR Hogg M Kurz-Levin N Lois AC Bird (2003) ArticleTitlePattern ERG: clinical overview, and some observations on associated fundus autofluorescence imaging in inherited maculopathy Documenta Ophthalmol 106 17–23 Occurrence Handle1:STN:280:DC%2BD3s7lvVCmtQ%3D%3D

    CAS  Google Scholar 

  15. JM Harrison PS O’Connor RSL Young M Kincaid R Bentley (1987) ArticleTitleThe pattern ERG in man following surgical resection of the optic nerve Invest Ophthalmol Vis Sci 28 492–499 Occurrence Handle1:STN:280:BiiC28vptV0%3D Occurrence Handle3557862

    CAS  PubMed  Google Scholar 

  16. L Maffei A Fiorentini (1981) ArticleTitleElectroretinographic response to alternating gratings before and after section of the optic nerve Science 211 953–954

    Google Scholar 

  17. S Viswanathan LJ Frishman JG Robson RS Harwerth EL Smith SuffixIII (1999) ArticleTitleThe photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma Invest Ophthalmol Vis Sci 40 1124–1136 Occurrence Handle1:STN:280:DyaK1M3kvFKhtg%3D%3D Occurrence Handle10235545

    CAS  PubMed  Google Scholar 

  18. DC Hood LJ Frishman S Viswanathan JG Robson J Ahmed (1999) ArticleTitleEvidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque Vis Neurosci 16 IssueID3 411–416 Occurrence Handle10.1017/S0952523899163028 Occurrence Handle1:STN:280:DyaK1M3nslCltw%3D%3D Occurrence Handle10349962

    Article  CAS  PubMed  Google Scholar 

  19. CJ Karwoski LM Proenza (1977) ArticleTitleRelationship between Müller cell responses, a local transretinal potential, and potassium flux J Neurophysiol 40 244–259 Occurrence Handle1:CAS:528:DyaE2sXls1Cltrg%3D

    CAS  Google Scholar 

  20. PA Sieving LJ Frishman RHS Steinberg (1986) ArticleTitleM wave of proximal retina in cat J Neurophysiol 56 IssueID4 1039–1048 Occurrence Handle1:STN:280:BiiD28%2FgtVc%3D Occurrence Handle3783227

    CAS  PubMed  Google Scholar 

  21. DA Burkardt (1970) ArticleTitleProximal negative response in frog retina J Neurophysiol 33 405–420

    Google Scholar 

  22. JE Dowling H Ripps (1977) ArticleTitleThe proximal negative response and visual adaptation in the skate retina J Gen Physiol 69 57–74 Occurrence Handle10.1085/jgp.69.1.57 Occurrence Handle1:STN:280:CSiD1MrosVM%3D Occurrence Handle833565

    Article  CAS  PubMed  Google Scholar 

  23. TE Ogden (1973) ArticleTitleThe proximal negative response of the primate retina Vision Res 13 797–807 Occurrence Handle1:STN:280:CSyC1c3ptVY%3D Occurrence Handle4196279

    CAS  PubMed  Google Scholar 

  24. P Gouras M Hoff (1970) ArticleTitleRetinal function in an isolated, perfused mammalian eye Invest Ophthalmol 9 388–399 Occurrence Handle1:STN:280:CS%2BC28rns1w%3D Occurrence Handle4314884

    CAS  PubMed  Google Scholar 

  25. G Niemeyer (1975) ArticleTitleThe function of the retina in the perfused eye Documenta Ophthalmol 39 53–116 Occurrence Handle1:STN:280:CSmD28rmsFU%3D

    CAS  Google Scholar 

  26. G Niemeyer (1981) ArticleTitleNeurobiology of perfused mammalian eyes J Neurosci Methods 3 317–337 Occurrence Handle10.1016/0165-0270(81)90022-4 Occurrence Handle1:STN:280:Bi6B3MbmtVc%3D Occurrence Handle7242143

    Article  CAS  PubMed  Google Scholar 

  27. G Niemeyer (2001) ArticleTitleRetinal research using the perfused mammalian eye Progr Retin Eye Res 20 IssueID3 289–318 Occurrence Handle1:CAS:528:DC%2BD3MXjslKksbc%3D

    CAS  Google Scholar 

  28. TE Ogden RF Miller (1966) ArticleTitleStudies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties Vision Res 6 485–506 Occurrence Handle1:STN:280:CCaC1c7ntFw%3D Occurrence Handle4976686

    CAS  PubMed  Google Scholar 

  29. A Hughes H Wässle (1976) ArticleTitleThe cat optic nerve: fibre total count and diameter spectrum J Comp Neurol 169 171–184 Occurrence Handle10.1002/cne.901690204 Occurrence Handle1:STN:280:CSiD3cnltFc%3D Occurrence Handle965509

    Article  CAS  PubMed  Google Scholar 

  30. RW Doty DS Kimura (1963) ArticleTitleOscillatory potentials in the visual system of cats and monkeys J Physiol 186 205–218

    Google Scholar 

  31. PO Bishop D Jeremy JW Lance (1953) ArticleTitleThe optic nerve. Properties of a central tract J Physiol 121 415–432 Occurrence Handle1:STN:280:CyuD3cngvFc%3D Occurrence Handle13085344

    CAS  PubMed  Google Scholar 

  32. A Ames SuffixIII BS Gurian (1960) ArticleTitleMeasurement of function in an in vitro preparation of mammalian central nervous tissue J Neurophysiol 23 676–691 Occurrence Handle13682987

    PubMed  Google Scholar 

  33. Niemeyer G, Kleinert D. Scotopic threshold response and optic nerve action potential of the perfused cat eye share important features. Invest Ophthamol Vis Sci (Suppl) 2001; 42: S179.

  34. C Karwoski (1991) Retinal extraxcellular potential responses not evoked by light. Chapter 17. JR Heckenlively GB Arden (Eds) Principles and practice of clinical electrophysiology of vision Mosby Year book St Louis

    Google Scholar 

  35. RA Bush C Remé (1992) ArticleTitleChronic lithium treatment induces reversible and irreversible changes in the rat ERG in vivo Clin Vision Sci 7 393–401

    Google Scholar 

  36. LJ Frishman MG Reddy JG Robson (1996) ArticleTitleEffects of background light on human dark-adapted electroretinogram and psychophysical threshold J Opt Soc Am 13 601–612 Occurrence Handle1:STN:280:BymC1Mzkt1Y%3D

    CAS  Google Scholar 

  37. DR Copenhagen S Hemilä T Reuter (1990) ArticleTitleSignal transmission through the dark-adapted retina of the toad J Gen Physiol 95 717–732 Occurrence Handle10.1085/jgp.95.4.717 Occurrence Handle1:STN:280:By%2BB2M%2FjvFQ%3D Occurrence Handle2110968

    Article  CAS  PubMed  Google Scholar 

  38. PA Sieving (1991) ArticleTitleRetinal ganglion cell loss does not abolish the scotopic threshold response (STR) of the cat and human ERG Clin Vision Sci 6 IssueID2 149–158

    Google Scholar 

  39. M Korth NX Nguyen F Horn P Martus (1994) ArticleTitleScotopic threshold response and scotopic PII in Galucoma Invest Ophthalmol Vis Sci 35 619–625 Occurrence Handle1:STN:280:ByuC2MnmsFQ%3D Occurrence Handle8113012

    CAS  PubMed  Google Scholar 

  40. LJ Frishman FF Shen L Du JG Robson RS Harwerth EL Smith SuffixIII L Carter-Dawson MLJ Crawford (1996) ArticleTitleThe scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma Invest Ophthalmol Vis Sci 37 125–141 Occurrence Handle1:STN:280:BymC2c3hsl0%3D Occurrence Handle8550316

    CAS  PubMed  Google Scholar 

  41. H Kolb (1991) The neural organization of the human retina Chapter 5. JR Heckenlively GB Arden (Eds) Principles and practice of clinical electrophysiology of vision Mosby Year book St Louis

    Google Scholar 

  42. Miller RF, Dacheux R, Proenza L. Müller cell depolarization evoked by antidromic optic nerve stimulation. Brain Res 177; 121:162–166.

  43. G Niemeyer N Kueng (1999) ArticleTitleA simple and stable d.c. electrode for ocular electrophysiology Documenta Ophthalmol 95 55–61

    Google Scholar 

  44. RK Orkand JG Nicholls SW Kuffler (1966) ArticleTitleEffect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia J Neurophysiol 29 788–806 Occurrence Handle1:STN:280:CCiC28nmvVY%3D Occurrence Handle5966435

    CAS  PubMed  Google Scholar 

  45. U Gerber G Niemeyer (1988) ArticleTitleBeta-adrenergic antagonists modify retinal function in the perfused cat eye Clin Vision Sci 3 IssueID4 255–266

    Google Scholar 

  46. A Kaelin-Lang B Jurklies G Niemeyer (1999) ArticleTitleEffects of adenosinergic agents on the vascular resistance and on the optic nerve response in the perfused cat eye Vision Res 39 IssueID6 1059–1068 Occurrence Handle10.1016/S0042-6989(98)00209-0 Occurrence Handle1:CAS:528:DyaK1MXhsleitLc%3D Occurrence Handle10343825

    Article  CAS  PubMed  Google Scholar 

  47. B Jurklies A Kaelin-Lang G Niemeyer (1996) ArticleTitleCholinergic effects on cat retina in vitro: changes in rod- and cone-driven b-wave and optic nerve response Vision Res 36 797–816 Occurrence Handle10.1016/0042-6989(95)00172-7 Occurrence Handle1:CAS:528:DyaK28Xitl2gs7o%3D Occurrence Handle8736216

    Article  CAS  PubMed  Google Scholar 

  48. Y Uji M Kuze H Matubara D Motoaki M Sasoh (2003) ArticleTitleEffects of the β1-selective adrenergic antagonist betaxolol on electroretinography in the perfused cat eye Documenta Ophthalmol 106 37–41

    Google Scholar 

  49. C Macaluso B Frueh A Kaelin-Lang S Onoe G Niemeyer (2003) ArticleTitleMultiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina Documenta Ophthalmol 106 51–59

    Google Scholar 

  50. D Finkelstein P Gouras (1969) ArticleTitleHuman electroretinogram near absolute threshold of vision Int Ophthalmol Clin 9 IssueID4 1073–1981 Occurrence Handle1:STN:280:CS6C2Mzht1E%3D Occurrence Handle5402920

    CAS  PubMed  Google Scholar 

  51. TE Ogden KT Brown (1964) ArticleTitleIntraretinal responses of the cynamolgus monkey to electrical stimulation of the optic nerve and retina J Neurophysiol 27 682–705 Occurrence Handle1:STN:280:CCqD3c%2FmvVc%3D Occurrence Handle14196312

    CAS  PubMed  Google Scholar 

  52. P Gouras (1969) ArticleTitleAntidromic responses of orthodromically identified ganglion cells in monkey retina J Physiol 204 407–419 Occurrence Handle1:STN:280:CS%2BD3cvovF0%3D Occurrence Handle4980966

    CAS  PubMed  Google Scholar 

  53. N Birbaumer T Elbert AgM Canavan B Rockstroh (1990) ArticleTitleSlow potentials of the cerebral cortex and behavior Physiol Reviews 70 1–41 Occurrence Handle1:STN:280:By%2BC3MngsVE%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Niemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, G. ERG Components of Negative Polarity from the Inner Retina and the Optic Nerve Response. Doc Ophthalmol 111, 179–189 (2005). https://doi.org/10.1007/s10633-005-5504-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-005-5504-8

Keywords

Navigation