Advertisement

Documenta Ophthalmologica

, Volume 111, Issue 3, pp 179–189 | Cite as

ERG Components of Negative Polarity from the Inner Retina and the Optic Nerve Response

  • Günter Niemeyer
Article

Abstract

ERG components of negative polarity in the light-adapted and in the dark-adapted inner retina are reviewed from a clinical perspective and include consideration of experimental research. Field potentials are inherently complex including summating contributions from specialized neurons as well as from glial elements. This property applies to the PERG, PhNR and to the STR. Experimental research can contribute to identifying the sites/cells of origins i.e. by determining depth profiles and by pharmacological manipulation. Intraretinal microelectrode-studies and pharmacological dissection of light-evoked responses have elucidated the origin of field potentials from the retinal pigment epithelium to the retinal ganglion cells. Thresholds for dark-adapted response components have been compared. Attenuation of the STR by anesthesia was found in cats in vivo when compared to threshold intensities used in isolated eye preparations in vitro, suggestive of depression of inner retinal activity by anesthetics. Evidence has been presented for antidromically elicited retinal responses of negative polarity that resemble the STR and summate with the light-evoked retinal response. This observation supports the notion that negative field potentials and components as recorded in the vitreous and at the cornea receive contributions from retinal ganglion cells. The weight of this contribution appears to vary among species, at least concerning the STR. The ocular negative reponses from the inner retina are compared to cortical excitatory mechanisms generating negativity in the baseline of the EEG.

Keywords

proximal retina electrical stimulation ERG optic nerve response PhNR PNR STR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fishman, GA, Birch, DG, Holder, GE, Brigell, MG 2001Electrophysiologic testing in disorders of the retina, optic nerve and visual pathway. 2nd ed. Ophthalmology monographsThe foundation of the American Academy of OphthalmologySan FranciscoGoogle Scholar
  2. 2.
    Gouras, P, Niemeyer, G 2005Electroretinography, Disorders of visual processing.Celesia, G eds. Handbook of Clinical NeurophysiologyElsevier BVEdinburgh8797Google Scholar
  3. 3.
    Principles and practice of clinical electrophysiology of vision. JR Heckenlively and GB Arden, eds. Mosby Year book, St Louis, 1991.Google Scholar
  4. 4.
    Sieving, PA, Frishman, LJ, Steinberg, RH 1986Scotopic threshold response of proximal retina in catJ Neurophysiol5610491061PubMedGoogle Scholar
  5. 5.
    Kuze, M, Niemeyer, G 2003Absolute sensitivity of the electroretinogram and of the optic nerve action potential in the perfused feline eyeJpn J Ophthalmol47362367CrossRefPubMedGoogle Scholar
  6. 6.
    Jost K. Vergleich der Lichtreizschwelle der Elektroretinogramms (ERG) des Menschen, der anästhesierten Katze und des perfundierten Katzenauges. MD thesis Faculty of Medicine, University Zurich, 2003.Google Scholar
  7. 7.
    Bush, RA, Hawks, KW, Sieving, PA 1995Preservation of inner retinal responses in the aged royal college of surgeon’s ratInvest Ophthalmol Vis Sci3620542062PubMedGoogle Scholar
  8. 8.
    Robson, JG, Frishman, LJ 1999Dissecting the dark-adapted electroretinogramDocumenta Ophthalmol3–4187215Google Scholar
  9. 9.
    Sieving, PA, Nino, C 1988Scotopic threshold response (STR) of the human electroretinogramInvest Ophthalmol Vis Sci2916081614PubMedGoogle Scholar
  10. 10.
    Aylward, GW, Veagan, , Billson, FA 1989The scotopic threshold response in manClin Vision Sci4373377Google Scholar
  11. 11.
    Niemeyer G, Jost K. Comparison of scotopic threshold response with optic nerve response and electrically driven retinal field potentials in vitro. Invest Opthalmol Vis Sci. 2002 (Suppl) 72:# 1815.Google Scholar
  12. 12.
    Arden, GB, Veagan,  1983Electroretinograms evoked in man by local uniform or patterned stimulationJ Physiol34185104PubMedGoogle Scholar
  13. 13.
    Holder, G 2001the pattern electroretinogram and an integrated approach to visual pathway diagnosisProgr Retin Eye Res20531561Google Scholar
  14. 14.
    Holder, GE, Robson, AG, Hogg, CR, Kurz-Levin, M, Lois, N, Bird, AC 2003Pattern ERG: clinical overview, and some observations on associated fundus autofluorescence imaging in inherited maculopathyDocumenta Ophthalmol1061723Google Scholar
  15. 15.
    Harrison, JM, O’Connor, PS, Young, RSL, Kincaid, M, Bentley, R 1987The pattern ERG in man following surgical resection of the optic nerveInvest Ophthalmol Vis Sci28492499PubMedGoogle Scholar
  16. 16.
    Maffei, L, Fiorentini, A 1981Electroretinographic response to alternating gratings before and after section of the optic nerveScience211953954Google Scholar
  17. 17.
    Viswanathan, S, Frishman, LJ, Robson, JG, Harwerth, RS, Smith, EL,III 1999The photopic negative response of the macaque electroretinogram: reduction by experimental glaucomaInvest Ophthalmol Vis Sci4011241136PubMedGoogle Scholar
  18. 18.
    Hood, DC, Frishman, LJ, Viswanathan, S, Robson, JG, Ahmed, J 1999Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaqueVis Neurosci16411416CrossRefPubMedGoogle Scholar
  19. 19.
    Karwoski, CJ, Proenza, LM 1977Relationship between Müller cell responses, a local transretinal potential, and potassium fluxJ Neurophysiol40244259Google Scholar
  20. 20.
    Sieving, PA, Frishman, LJ, Steinberg, RHS 1986M wave of proximal retina in catJ Neurophysiol5610391048PubMedGoogle Scholar
  21. 21.
    Burkardt, DA 1970Proximal negative response in frog retinaJ Neurophysiol33405420Google Scholar
  22. 22.
    Dowling, JE, Ripps, H 1977The proximal negative response and visual adaptation in the skate retinaJ Gen Physiol695774CrossRefPubMedGoogle Scholar
  23. 23.
    Ogden, TE 1973The proximal negative response of the primate retinaVision Res13797807PubMedGoogle Scholar
  24. 24.
    Gouras, P, Hoff, M 1970Retinal function in an isolated, perfused mammalian eyeInvest Ophthalmol9388399PubMedGoogle Scholar
  25. 25.
    Niemeyer, G 1975The function of the retina in the perfused eyeDocumenta Ophthalmol3953116Google Scholar
  26. 26.
    Niemeyer, G 1981Neurobiology of perfused mammalian eyesJ Neurosci Methods3317337CrossRefPubMedGoogle Scholar
  27. 27.
    Niemeyer, G 2001Retinal research using the perfused mammalian eyeProgr Retin Eye Res20289318Google Scholar
  28. 28.
    Ogden, TE, Miller, RF 1966Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological propertiesVision Res6485506PubMedGoogle Scholar
  29. 29.
    Hughes, A, Wässle, H 1976The cat optic nerve: fibre total count and diameter spectrumJ Comp Neurol169171184CrossRefPubMedGoogle Scholar
  30. 30.
    Doty, RW, Kimura, DS 1963Oscillatory potentials in the visual system of cats and monkeysJ Physiol186205218Google Scholar
  31. 31.
    Bishop, PO, Jeremy, D, Lance, JW 1953The optic nerve. Properties of a central tractJ Physiol121415432PubMedGoogle Scholar
  32. 32.
    Ames, A,III, Gurian, BS 1960Measurement of function in an in vitro preparation of mammalian central nervous tissueJ Neurophysiol23676691PubMedGoogle Scholar
  33. 33.
    Niemeyer G, Kleinert D. Scotopic threshold response and optic nerve action potential of the perfused cat eye share important features. Invest Ophthamol Vis Sci (Suppl) 2001; 42: S179.Google Scholar
  34. 34.
    Karwoski, C 1991Retinal extraxcellular potential responses not evoked by light. Chapter 17.Heckenlively, JRArden, GB eds. Principles and practice of clinical electrophysiology of visionMosby Year bookSt LouisGoogle Scholar
  35. 35.
    Bush, RA, Remé, C 1992Chronic lithium treatment induces reversible and irreversible changes in the rat ERG in vivoClin Vision Sci7393401Google Scholar
  36. 36.
    Frishman, LJ, Reddy, MG, Robson, JG 1996Effects of background light on human dark-adapted electroretinogram and psychophysical thresholdJ Opt Soc Am13601612Google Scholar
  37. 37.
    Copenhagen, DR, Hemilä, S, Reuter, T 1990Signal transmission through the dark-adapted retina of the toadJ Gen Physiol95717732CrossRefPubMedGoogle Scholar
  38. 38.
    Sieving, PA 1991Retinal ganglion cell loss does not abolish the scotopic threshold response (STR) of the cat and human ERGClin Vision Sci6149158Google Scholar
  39. 39.
    Korth, M, Nguyen, NX, Horn, F, Martus, P 1994Scotopic threshold response and scotopic PII in GalucomaInvest Ophthalmol Vis Sci35619625PubMedGoogle Scholar
  40. 40.
    Frishman, LJ, Shen, FF, Du, L, Robson, JG, Harwerth, RS, Smith, EL,III, Carter-Dawson, L, Crawford, MLJ 1996The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucomaInvest Ophthalmol Vis Sci37125141PubMedGoogle Scholar
  41. 41.
    Kolb, H 1991The neural organization of the human retina Chapter 5.Heckenlively, JRArden, GB eds. Principles and practice of clinical electrophysiology of visionMosby Year bookSt LouisGoogle Scholar
  42. 42.
    Miller RF, Dacheux R, Proenza L. Müller cell depolarization evoked by antidromic optic nerve stimulation. Brain Res 177; 121:162–166.Google Scholar
  43. 43.
    Niemeyer, G, Kueng, N 1999A simple and stable d.c. electrode for ocular electrophysiologyDocumenta Ophthalmol955561Google Scholar
  44. 44.
    Orkand, RK, Nicholls, JG, Kuffler, SW 1966Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibiaJ Neurophysiol29788806PubMedGoogle Scholar
  45. 45.
    Gerber, U, Niemeyer, G 1988Beta-adrenergic antagonists modify retinal function in the perfused cat eyeClin Vision Sci3255266Google Scholar
  46. 46.
    Kaelin-Lang, A, Jurklies, B, Niemeyer, G 1999Effects of adenosinergic agents on the vascular resistance and on the optic nerve response in the perfused cat eyeVision Res3910591068CrossRefPubMedGoogle Scholar
  47. 47.
    Jurklies, B, Kaelin-Lang, A, Niemeyer, G 1996Cholinergic effects on cat retina in vitro: changes in rod- and cone-driven b-wave and optic nerve responseVision Res36797816CrossRefPubMedGoogle Scholar
  48. 48.
    Uji, Y, Kuze, M, Matubara, H, Motoaki, D, Sasoh, M 2003Effects of the β1-selective adrenergic antagonist betaxolol on electroretinography in the perfused cat eyeDocumenta Ophthalmol1063741Google Scholar
  49. 49.
    Macaluso, C, Frueh, B, Kaelin-Lang, A, Onoe, S, Niemeyer, G 2003Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retinaDocumenta Ophthalmol1065159Google Scholar
  50. 50.
    Finkelstein, D, Gouras, P 1969Human electroretinogram near absolute threshold of visionInt Ophthalmol Clin910731981PubMedGoogle Scholar
  51. 51.
    Ogden, TE, Brown, KT 1964Intraretinal responses of the cynamolgus monkey to electrical stimulation of the optic nerve and retinaJ Neurophysiol27682705PubMedGoogle Scholar
  52. 52.
    Gouras, P 1969Antidromic responses of orthodromically identified ganglion cells in monkey retinaJ Physiol204407419PubMedGoogle Scholar
  53. 53.
    Birbaumer, N, Elbert, T, Canavan, AgM, Rockstroh, B 1990Slow potentials of the cerebral cortex and behaviorPhysiol Reviews70141Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations