Advertisement

Documenta Ophthalmologica

, Volume 110, Issue 2–3, pp 163–172 | Cite as

Visual Evoked Potentials and Reaction Time Measurements to Motion-reversal Luminance- and Texture-defined Stimuli

  • Hadi Chakor
  • Armando Bertone
  • Michelle McKerral
  • Jocelyn Faubert
  • Pierre Lachapelle
Article

Abstract

Purpose: Previous studies have suggested that compared to first-order (FO) motion stimuli, second-order (SO) motion stimuli required more cortical time to be processed. The purpose of this study was: 1- to verify this claim with Visual Evoked Potential (VEP) and eye-hand Reaction Time (RT) measurements and 2- examine if the VEP and RT responses are similarly modulated by the same trigger features of the stimuli. Methods: The VEPs and eye-hand RT for motion-reversal luminance- (first-order) and texturedefined (second-order) stimuli were recorded from ten normal human subjects. VEPs and RTs were measured for each motion class at eight different modulation depths (from 3 to 100%). Results: Our results reveal that for stimuli of low contrast levels, the SO–FO timing differences are approximately 100 ms (RT) or 20 ms (VEP), while for contrasts ≥ 15–20% (VEP) or ≥ 50% (RT), the SO–FO difference is no longer significant (p < 0.007), suggesting either that the brain can no longer distinguish SO from FO stimuli or that in spite of the added complexity of SO stimuli the brain takes equal time to process both. Conclusion: Interestingly, the above contrast discrepancy in SO–FO resolution threshold suggests that, compared to the VEP, the more psychophysical RT measurement can process and thus distinguish a larger spectrum of motion stimuli, thus further confirming the latter measure of the retinocortical processing time as a valid alternative to the VEP.

Keywords

VEP reaction time motion human normal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chubb, C, Olzak, L, Derrington, A 2001Second-order processes in vision; introduction.J Opt Soc Am A18217578Google Scholar
  2. 2.
    Baker, C L,Jr, Mareschal, I 2001Processing of second-order motion in the visual cortex.Prog in Brain Res13417191Google Scholar
  3. 3.
    Smith, A T, Greenlee, MW, Singh, KD, Kraemer, FM, Henning, J 1998The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI).J Neurosci18381630PubMedGoogle Scholar
  4. 4.
    Dumoulin, SO, Baker, CL,Jr, Hess, RF, Evans, AC 2003Cortical specialization for processing first- and second-order motion.Cereb Cortex1312137585Google Scholar
  5. 5.
    Chubb, C, Sperling, G 1988Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception.J Opt Soc Am A519862006PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson, HR, Ferrera, VP, Yo, C 1992A psychophysically motivated model for two-dimensional motion perception.Visual Neurosci97997Google Scholar
  7. 7.
    Habak C, Faubert J. Larger effect of aging on the perception of higher-order stimuli. Vision Res 2000; 40, 943–50.Google Scholar
  8. 8.
    Bertone, A, Mottron, L, Jelenic, P, Faubert, J 2003Motion perception in autism: A ‘complex’ issue.J Cognitive Neurosci1521825Google Scholar
  9. 9.
    Kogan, B, Cornish, B, Andermann, K, Chaudhuri, F 2004Integrative cortical dysfunction and pervasive moiton perception deficit in fragile x syndrome.Neurology,63163439Google Scholar
  10. 10.
    Bach, M, Meigen, T 1992Electrophysiological correlate of texture segregation in the human visual evoked potential.Vision Res3241724PubMedGoogle Scholar
  11. 11.
    Lamme, VAF, Dijk, BW, Spekreijse, H 1992Texture segregation is processed by primary visual cortex in man and monkey. Evidence from VEP experiments.Vision Res32797807CrossRefPubMedGoogle Scholar
  12. 12.
    Lamme, VA, Dijk, BW, Spekreijse, H 1993Contour from motion processing occurs in primary visual cortex.Nature36354143CrossRefPubMedGoogle Scholar
  13. 13.
    Bach, M, Meigen, T 1997Similar electrophysiological correlates of texture segregation induced by luminance, orientation, motion and stereo.Vision Res37140914PubMedGoogle Scholar
  14. 14.
    Casco, C, Caputo, G, Grieco, A 1999Discrimination of an orientation difference in dynamic textures.Vision Res4127584Google Scholar
  15. 15.
    Bach, M, Meigen, T 1999Electrophysiological correlates of human texture segregation, an overview.Doc Ophthalmol9533547Google Scholar
  16. 16.
    Chiappa KH. Principles of evoked potentials. In: Chiappa KH, ed. Evoked potentials in clinical medecine, 2nd ed. New York: Raven Press, 1990: 1–135.Google Scholar
  17. 17.
    Markwardt, F, Göpfert, E, Müller, R 1988Influence of velocity, temporal frequency and initial phase position of grating patterns on motion VEP.Biomed Bioch Acta4775360Google Scholar
  18. 18.
    Kubová, Z, Kuba, M, Spekreijse, H, Blakemore, C 1995Contrast dependence on motion-onset and pattern-reversal evoked potentials.Vision Res35197205PubMedGoogle Scholar
  19. 19.
    Müller, R, Göpfert, E 1988The influence of grating contrast on the human cortical potential visually evoked by motion.Acta Neurobiol Exp4823949Google Scholar
  20. 20.
    Kubova, Z, Kuba, M, Hubacek, J, Vit, F 1990Properties of visual evoked potentials to onset of movement on a television screen.Doc Ophthalmol756772PubMedGoogle Scholar
  21. 21.
    Schlykowa, L, Dijk, BW, Ehrenstein, WH 1993Motion-onset visual-evoked potentials as a function of retinal eccentricity in man.Cognitive Brain Res116974CrossRefGoogle Scholar
  22. 22.
    Probs, T, Plendl, H, Paulus, W, Wist, ER, Scherg, M 1993Identification of the visual motion area (area V5) in the human brain by dipole source analysis.Exp Brain Res9334551Google Scholar
  23. 23.
    Bach, M, Ullrich, D 1997Contrast dependency of motion onset and pattern reversal VEPs.Vision Res37184549PubMedGoogle Scholar
  24. 24.
    Baedeker, C, Wolf, W 1987Influence of saccades on manual reactions–a reaction time and VEP study.Vision Res2760919CrossRefPubMedGoogle Scholar
  25. 25.
    Burr, DC, Fiorentini, A, Morrone, C 1998Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed.Vision Res38368190PubMedGoogle Scholar
  26. 26.
    Felipe, A, Buades, MJ, Artigas, JM 1993Influence of the contrast sensitivity function on the reaction time.Vision Res33246166CrossRefPubMedGoogle Scholar
  27. 27.
    Hartwell, RC, Cowan, JD 1993Evoked potentials and simple motor reaction times to localized visual patterns.Vision Res33132537CrossRefPubMedGoogle Scholar
  28. 28.
    McKerral, M, Lachapelle, P, Benoit, J 1991Comparative effects of luminance and scatter on the pattern visual evoked potential and eye-hand reaction time.Doc Ophthalmol7917785Google Scholar
  29. 29.
    McKerral, M, Polomeno, RC, Lepore, F, Lachapelle, P 1999Can interocular pattern reversal visual evoked potential and motor reaction time differences distinguish anisometropic from strabismic amblyopia ?Acta Ophthalmol774044Google Scholar
  30. 30.
    Mihaylova, M, Stomonyakov, V, Vassilev, A 1999Peripheral and central delay in processing high spatial frequencies: reaction time and VEP studies.Vision Res.39699705PubMedGoogle Scholar
  31. 31.
    Musselwhite, MJ, Jeffreys, DA 1985The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli.Vision Res25154555CrossRefPubMedGoogle Scholar
  32. 32.
    McKerral, M, Lepore, F, Lachapelle, P 2001Response characteristics of the normal retino-cortical pathways as determined with simultaneous recordings of pattern visual evoked potentials and simple motor reaction times.Vision Res41108590CrossRefPubMedGoogle Scholar
  33. 33.
    Ledgeway, T, Smith, AT 1994Evidence for separate motion-detecting mechanisms for first and second order motion in human vision.Vision Res34272740PubMedGoogle Scholar
  34. 34.
    Bertone, A, Faubert, J 2003How is complex second-order motion processed ?Vision Res432591601CrossRefPubMedGoogle Scholar
  35. 35.
    Kuba, M, Kubova, Z 1992The effect of spatial frequency and contrast on the latency in the visual evoked potential.Doc Ophthalmol7918794Google Scholar
  36. 36.
    Heinrich, TS, Bach, M 2001Contrast adaptation in human retina and cortex.Invest Ophthalmol Vis Sci42272127PubMedGoogle Scholar
  37. 37.
    Mecacci, L, Spinelli, D 1976The effect of spatial frequency adaptation on humain evoked potentials.Vision Res1647779CrossRefGoogle Scholar
  38. 38.
    Hoffmann, M, Dorn, T, Bach, M 1999Time course of motion adaptation: Motion onset visual evoked potentials and subjective estimates.Vision Res3943744PubMedGoogle Scholar
  39. 39.
    Roy, MS, Lachapelle, P, Polomeno, RC, Frigon, JY, Lepore, F 1994Human strabismus : evaluation of the inter-hemispheric transmission time and hemiretinal differences using a reaction time task.Behav Brain Res626370CrossRefPubMedGoogle Scholar
  40. 40.
    Ellemberg, D, Lavoie, K, Lewis, T.L, Maurer, D, Lepore, F., Guillemot, JP 2003Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion.Vision Res4365158CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hadi Chakor
    • 1
    • 2
  • Armando Bertone
    • 1
  • Michelle McKerral
    • 3
  • Jocelyn Faubert
    • 1
  • Pierre Lachapelle
    • 2
  1. 1.Visual Psychophysics and Perception Laboratory, Ecole d’optométrieUniversité de MontréalCanada
  2. 2.Department of OphthalmologyMcGill University- Montréal Children’s Hospital Research InstituteCanada
  3. 3.Centre de recherche interdisciplinaire en réadaptation-centre de réadaptation Lucie-Bruneau et départment de psychologieUniversité de MontréalMontréalCanada

Personalised recommendations