Advertisement

Documenta Ophthalmologica

, Volume 109, Issue 2, pp 189–199 | Cite as

Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis

  • Donald C. Hood
  • Nitin Ohri
  • E. Bo Yang
  • Christopher Rodarte
  • Xian Zhang
  • Brad Fortune
  • Chris A. Johnson
Article

Abstract

Purpose: To describe a methodology for measuring abnormal timing of monocular multifocal visual evoked potentials (mfVEP). Methods: The mfVEPs from 100 individuals with normal visual fields and normal fundus exams were analyzed. The stimulus was a 60 sector, pattern-reversing dartboard display. For each of the 60 locations of the dartboard and each channel and each eye, a template was derived based upon the average of the responses from the 100 normal individuals. In deriving this template, care was taken to exclude those responses reversed in polarity as compared to the average response. The best array of responses for each individual was compared to these templates. The relative latency of each response was measured as the temporal shift producing the best cross-correlation value. Results: The 95% confidence interval (CI) decreased as the signal-to-noise ratio (SNR) of the mfVEP responses increased. For example, the 95% CI decreased from over 17 ms to under 9 ms as the SNR increased. Grouping and summing the responses also lead to an increase in SNR and a decrease in CI. Because the number of points exceeding the CI is not randomly distributed among normal individuals, a cluster criterion (e.g. two or more contiguous points within a hemisphere exceeding a given confidence interval) can be helpful. For example, while 18% of the eyes had 5 or more points exceeding the 5% confidence interval, only 6.5% of the eyes had a cluster of 5 of these points. The correlation between relative latency and age was relatively low (r=0.46). Conclusion: For detecting abnormalities in the timing of monocular, mfVEP responses, a template method provides a reasonable approach. In devising a particular test for abnormal timing, the CI should be based upon the SNR of the response. In addition, grouping and summing responses to increase SNR or employing a cluster test may also prove useful.

Keywords

electrophysiology latency multifocal visual evoked potential VEP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Regan, D 1989Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine.ElsevierNew YorkGoogle Scholar
  2. Brigell MG. The visual evoked potential. In: Fishman GA, Birch DG, et al, eds. Electrophysiological testing in disorders of the retina, optic nerve, and visual pathway. San Francisco: American Academy of Ophthalmology, 2001: 237–79.Google Scholar
  3. Hood, DC, Zhang, X, Hong, JE, Chen, CS 2002Quantifying the benefits of additional channels of multifocal VEP recording.Doc Ophthalmol10430320Google Scholar
  4. Shimada Y, Horiguchi M, Nakamura A. Spatial and temporal properties of interocular timing differences in multifocal visual evoked potential. Vis Res 2004; in press.Google Scholar
  5. Hood, DC, Zhang, X, Rodarte, C, Yang, EB, Ohri, N, Fortune, B, Johnson, CA 2004Determining abnormal interocular latencies of multifocal visual evoked potentials.Doc Ophthalmol109177187Google Scholar
  6. Hood, DC, Odel, JG, Zhang, X 2000Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study.Invest Ophthalmol Vis Sci4140328Google Scholar
  7. Kardon RH, Givre SJ, Wall M, Hood D. Comparison of threshold and multifocal-VEP perimetry in recovered optic neuritis. In Wall M, Mills RP eds. Perimetry Update 2000/2001: Proceedings of the XVIIth International Perimetric Society Meeting Sept. 6–9, 2000. pp. 19–28. Kugler Publications, New York, NY. Google Scholar
  8. Klistorner AI, Balachandran C, Graham SL, Billson F. Multifocal VEP latency in glaucoma [abstract]. Annual Meeting Abstract and Program Planner [on CD-ROM]. Association for Research in Vision and Ophthalmology. Abstract 2165.Google Scholar
  9. Balachandran, C, Klistorner, AI, Graham, SL 2003Effect of stimulus check size on multifocal visual evoked potentials.Doc Ophthalmol10618388Google Scholar
  10. Balachandran C, Klistorner AI, Billson F. Multifocal VEP in children: its maturation and clinical application. Brit J Opthalmol 88: 223–32.Google Scholar
  11. Fortune B, Zhang X, Hood DC, Demirel S, Johnson CA. Normative ranges and specificity of the multifocal VEP. Doc Ophthalmol. In press.Google Scholar
  12. Hood, DC, Greenstein, VC 2003Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma.Prog Retin Eye Res2220151CrossRefPubMedGoogle Scholar
  13. Zhang, X, Hood, DC, Chen, CS, Hong, JE 2002A signal-to-noise analysis of multifocal VEP responses: an objective definition for poor records.Doc Ophthalmol.104287302Google Scholar
  14. Hood, DC, Zhang, X, Winn, BJ 2003Detecting glaucomatous damage with the mfVEP: how can a monocular test work?J Glaucoma12315Google Scholar
  15. Baseler, HA, Sutter, EE, Klein, SA, Carney, T 1994The topography of visual evoked response properties across the visual field.Electroencephalogr Clin Neurophysiol906581CrossRefPubMedGoogle Scholar
  16. Klistorner, AI, Graham, SL, Grigg, JR, Billson, FA 1998Multifocal topographic visual evoked potential: improving objective detection of local visual field defects.Invest Ophthalmol Vis Sci3993750Google Scholar
  17. Hood, DC, Zhang, X, Greenstein, VC, Kangovi, S, Odel, JG, Liebmann, JM, Ritch, R 2000An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve.Invest Ophthalmol Vis Sci4115807Google Scholar
  18. Fortune, B, Hood, DC 2003Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs.Invest Ophthalmol Vis Sci44136475Google Scholar
  19. Goldberg, I, Graham, SL, Klistorner, AI 2002Multifocal objective perimetry in the detection of glaucomatous field loss.Am J Ophthalmol1332939Google Scholar
  20. Allison, T, Hume, AL, Wood, CC, Goff, WR 1984Deveopmental and aging changes in somatosensory, auditory and visual evoked potentials.Electroencephalogr Clin Neurophysio581424Google Scholar
  21. Celesia, GG, Kaufman, D, Cone, S 1987Effects of age and sex on pattern electroretinograms and visual evoked potentials.Electroencephalogr Clin Neurophysiol6816171Google Scholar
  22. Chu, N-S 1987Pattern-reversal visual evoked potentials: latency changes with gender and age.Clin Electroencephalogr1815962Google Scholar
  23. Mitchell, KW, Howe, JW, Spencer, SR 1987Visual evoked potentials in the older population: age and gender effects.Clin Phys Physiol Meas831724Google Scholar
  24. Tobimatsu, S, Kurita-Tashima, S, Nakayama-Hiromatsu, M, Akazawa, K, Kato, M 1993Age-related changes in pattern visual evoked potentials: differential effects of luminance, contrast and check size.Electroencephalogr Clin Neurophy88129Google Scholar
  25. Zhang, X, Hood, DC 2004A principle component analysis of multifocal pattern reversal VEP.J Vis43243Google Scholar
  26. Zhang X, Hood DC. Increasing the sensitivity of the multifocal visual evoked potential (mfVEP) technique: incorporating information from higher order kernels using a principal component analysis method. Doc Ophthalmol 2004, in press.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Donald C. Hood
    • 1
  • Nitin Ohri
    • 1
  • E. Bo Yang
    • 1
  • Christopher Rodarte
    • 1
  • Xian Zhang
    • 1
  • Brad Fortune
    • 2
  • Chris A. Johnson
    • 2
  1. 1.Department of PsychologyColumbia UniversityNew YorkUSA
  2. 2.Discoveries in Sight, Devers Eye InstituteLegacy Health SystemPortlandUSA

Personalised recommendations