Advertisement

Discrete Event Dynamic Systems

, Volume 19, Issue 2, pp 213–265 | Cite as

Control of Parameterized Discrete Event Systems

  • Hans Bherer
  • Jules Desharnais
  • Richard St-Denis
Article

Abstract

This paper investigates the control of parameterized discrete event systems when specifications are given in terms of predicates and satisfy a similarity assumption. This study is motivated by a weakness in current synthesis methods that do not scale well to huge systems. For systems consisting of similar processes under total or partial observation, conditions are given to deduce properties of a system of n processes (arbitrary size) from properties of a system of n 0 processes (bounded size), with n ≥ n 0. Furthermore, it is shown how to infer a control policy for the former from the latter’s, while taking into account interconnections between processes.

Keywords

Parameterized discrete event system State feedback control Scalable control policy Interconnection relation Weak and strong soundness 

Notes

Acknowledgements

The research described in this paper was supported in part by the Natural Sciences and Engineering Research Council of Canada. The authors would like to thank Michel Embe Jiague for his suggestion about Proposition 4.

References

  1. Attie PC, Emerson EA (1998) Synthesis of concurrent systems with many similar processes. ACM Trans Program Lang Syst 20(1):1–65CrossRefGoogle Scholar
  2. Balemi S, Hoffmann GJ, Gyugyi P, Wong-Toi H, Franklin GF (1993) Supervisory control of a rapid thermal multiprocessor. IEEE Trans Autom Contr 38(7):1040–1059MATHCrossRefMathSciNetGoogle Scholar
  3. Barbeau M, Kabanza F, St-Denis, R (1997) An efficient algorithm for controller synthesis under full observation. J Algorithms 25(1):144–161MATHCrossRefMathSciNetGoogle Scholar
  4. Barrett G, Lafortune S (1998) Bisimulation, the supervisory control problem and strong model matching for finite state machines. Discret Event Dyn Syst Theory Appl 8(4):377–429MATHCrossRefMathSciNetGoogle Scholar
  5. Ben Hadj-Alouane N, Lafortune S, Lin F (1994) Variable lookahead supervisory control with state information. IEEE Trans Autom Contr 39(12):2398–2410MATHCrossRefGoogle Scholar
  6. Ben Hadj-Alouane N, Lafortune S, Lin F (1996) Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation. Discret Event Dyn Syst Theory Appl 6(4): 379–427MATHCrossRefGoogle Scholar
  7. Bherer H, Desharnais J, Frappier M, St-Denis R (2003) Intégration d’une technique de vérification dans une procédure de synthèse de contrôleurs de systèmes paramétrés. In: Méry D, Rezg N, Xie X (eds) Modélisation des systèmes réactifs (MSR 2003), pp 553–566Google Scholar
  8. Bherer H, Desharnais J, Frappier M, St-Denis R (2004) Synthesis of state feedback controllers for parameterized discrete event systems. In: Wang F (ed) Automated technology for verification and analysis (ATVA’2004). Lecture notes in computer science, vol 3299. Springer, Berlin Heidelberg New York, pp 487–490Google Scholar
  9. Bherer H, Desharnais J, St-Denis R (2005) Synthesis of state feedback controllers for parameterized discrete event systems under partial observation. In: Proceedings of the 44th IEEE conference on decision and control and European control conference 2005. IEEE, Seville, pp 3499–3506Google Scholar
  10. Bherer H, Desharnais J, St-Denis R (2006a) Parameterized discrete event systems under partial observation revisited. In: Proceedings of the 8th IASTED international conference on control and applications. IASTED, Montréal, pp 273–280Google Scholar
  11. Bherer H, Desharnais J, St-Denis R (2006b) On the reachability and nonblocking properties for parameterized discrete event systems. In: Proceedings of the 8th international workshop on discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 113–118Google Scholar
  12. Cassandras CG, Lafortune S (1999) Introduction to discrete event systems. Kluwer, BostonMATHGoogle Scholar
  13. Chung S-L, Lafortune S, Lin F (1992) Limited lookahead policies in supervisory control of discrete event systems. IEEE Trans Autom Contr 37(12):1921–1935MATHCrossRefMathSciNetGoogle Scholar
  14. Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, CambridgeMATHGoogle Scholar
  15. de Queiroz MH, Cury JER (2000) Modular supervisory control of large scale discrete event systems. In: Boel R, Stremersch G (eds) Discrete event systems: analysis and control. The international series in engineering and computer science, vol 569. Springer, Berlin Heidelberg New York, pp 103–110Google Scholar
  16. Dreschsler R, Sieling D (2001) Binary decision diagrams in theory and practice. Int J Softw Tools Technol Transf 3(2):112–136Google Scholar
  17. Emerson EA, Kahlon V (2000) Reducing model checking of the many to the few. In: McAllester DA (ed) Automated deduction (CADE’2000). Lecture notes in computer science, vol 1831. Springer, Berlin Heidleberg New York, pp 236–354CrossRefGoogle Scholar
  18. Emerson EA, Sistla AP (1997) Utilizing symmetry when model-checking under fairness assumptions: an automata-theoretic approach. ACM Trans Program Lang Syst 19(4):617–638CrossRefGoogle Scholar
  19. Eyzell JM, Cury JER (2001) Exploiting symmetry in the synthesis of supervisors for discrete event systems. IEEE Trans Autom Contr 46(9):1500–1505MATHCrossRefMathSciNetGoogle Scholar
  20. Frappier M, St-Denis R (2001) Towards a computer-aided design of reactive systems. In: Moreno-Díaz R, Buchberger B, Freire J-L (eds) Computer aided systems theory – EUROCAST 2001. Lecture notes in computer science, vol 2178. Springer, Berlin Heidelberg New York, pp 421–436CrossRefGoogle Scholar
  21. Gohari P, Wonham WM (2005) Efficient implementation of fairness in discrete-event systems using queues. IEEE Trans Autom Contr 50(11):1845–1849CrossRefMathSciNetGoogle Scholar
  22. Gries D, Schneider FB (1995) A logical approach to discrete math. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Giua A, DiCesare F (1994) Petri net structural analysis for supervisory control. IEEE Trans Robot Autom 10(2):185–195CrossRefGoogle Scholar
  24. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231–274MATHCrossRefMathSciNetGoogle Scholar
  25. Heymann M, Lin F (1994) On-line control of partially observed discrete event systems. Discret Event Dyn Syst 4(3):221–236MATHCrossRefGoogle Scholar
  26. Holloway LE, Krogh BH, Giua A (1997) A survey of Petri net methods for controlled discrete event systems. Discret Event Dyn Syst Theory Appl 7(2):151–190MATHCrossRefGoogle Scholar
  27. Kerjean S, Kabanza F, St-Denis R, Thiébaux S (2006) Analyzing LTL model checking techniques for plan synthesis and controller synthesis. Electron Notes Theor Comput Sci 149(2):91–104CrossRefGoogle Scholar
  28. Komenda J, van Schuppen JH (2005) Supremal sublanguages of general specification languages arising in modular control of dicrete-event systems. In: Proceedings of the 44th IEEE conference on decision and control and European control conference 2005. IEEE, Seville, pp 2275–2780Google Scholar
  29. Komenda J, van Schuppen JH, Gaudin B, Marchand H (2005) Modular supervisory control with general indecomposable specification languages. In: Proceedings of the 44th IEEE conference on decision and control and European control conference 2005. IEEE, Seville, pp 3474–3479Google Scholar
  30. Kumar R, Garg VK (1995) Modeling and control of logical discrete event systems. Kluwer, BostonMATHGoogle Scholar
  31. Kumar R, Garg V, Marcus SI (1993) Predicates and predicate transformers for supervisory control of discrete event dynamical systems. IEEE Trans Autom Contr 38(2):232–247MATHCrossRefMathSciNetGoogle Scholar
  32. Leduc RJ, Brandin BA, Lawford M, Wonham WM (2005) Hierarchical interface-based supervisory control—part I: serial case. IEEE Trans Autom Contr 50(9):1322–1335CrossRefMathSciNetGoogle Scholar
  33. Li Y (1991) Control of vector discrete-event systems. Ph.D. thesis, University of Toronto, TorontoGoogle Scholar
  34. Li Y, Wonham WM (1988) Controllability and observability in the state-feedback control of discrete-event systems. In: Proceedings of 27th IEEE conference on decision and control. IEEE, Austin, pp 203–208Google Scholar
  35. Li Y, Wonham WM (1993) Control of vector discrete-event systems I—the base model. IEEE Trans Autom Contr 38(8):1214–1227MATHCrossRefMathSciNetGoogle Scholar
  36. Li Y, Wonham WM (1994) Control of vector discrete-event systems II—controller synthesis. IEEE Trans Autom Contr 39(3):512–531MATHCrossRefMathSciNetGoogle Scholar
  37. Ma C, Wonham WM (2005) Nonblocking supervisory control of state tree structures. Lecture notes in control and information sciences, vol 317. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  38. Makungu M, Barbeau M, St-Denis R (1999) Synthesis of controllers of processes modeled as colored Petri nets. Discret Event Dyn Syst Theor Appl 9(2):147–169MATHCrossRefMathSciNetGoogle Scholar
  39. Pena PN, Cury JER, Lafortune S (2006) Testing modularity of local supervisors: an approach based on abstractions. In: Proceedings of the 8th international workshop on discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 107–112Google Scholar
  40. Pnueli A, Ruah S, Zuck L (2001) Automatic deductive verification with invisible invariants. In: Margaria T, Yi W (eds) Tools and algorithms for the construction and analysis of systems. Lecture notes in computer science, vol 2031. Springer, Berlin Heidelberg New York, pp 82–97CrossRefGoogle Scholar
  41. Prosser JH, Kam M, Kwatny HG (1998) Online supervisor synthesis for partially observed discrete-event systems. IEEE Trans Autom Contr 43(11):1630–1634MATHCrossRefMathSciNetGoogle Scholar
  42. Ramadge PJG, Wonham WM (1987) Modular feedback logic for discrete event systems. SIAM J Contr Optim 25(5):1202–1218CrossRefMathSciNetGoogle Scholar
  43. Schmidt K, Marchand H, Gaudin B (2006) Modular and decentralized supervisory control of concurrent discrete event systems using reduced system models. In: Proceedings of the 8th international workshop on discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 149–154Google Scholar
  44. Song R, Leduc RJ (2006) Symbolic synthesis and verification of hierarchical interface-based supervisory control. In: Proceedings of the 8th international workshop on discrete event systems. Ann Arbor, MI, 10–12 July 2006, pp 419–426Google Scholar
  45. St-Denis R (2002) Designing reactive systems: integration of abstraction techniques into a synthesis procedure. J Syst Softw 60(2):103–112CrossRefGoogle Scholar
  46. Takai S, Kodama S (1997) M-controllable subpredicates arising in state feedback control of discrete event systems. Int J Contr 67(4):553–566MATHCrossRefMathSciNetGoogle Scholar
  47. Takai S, Kodama, S (1998) Characterization of all M-controllable subpredicates of a given predicate. Int J Contr 70(4):541–549MATHCrossRefMathSciNetGoogle Scholar
  48. Takai S, Ushio T, Kodama S (1995) Static-state feedback control of discrete-event systems under partial observation. IEEE Trans Autom Contr 40(11):1950–1954MATHCrossRefMathSciNetGoogle Scholar
  49. Thistle JG, Nazari S (2005) Analysis of arbitrarily large networks of discrete-event systems. In: Proceedings of the 44th IEEE conference on decision and control and European control conference 2005. IEEE, Seville, pp 3468–3473Google Scholar
  50. Wonham WM (2006) Supervisory control of discrete-event systems. ECE 1636F/1637S, System control group. University of Toronto, TorontoGoogle Scholar
  51. Wonham WM, Ramadge PJG (1988) Modular supervisory control of discrete event systems. Math Contr Signals Syst 1(1):13–30MATHCrossRefMathSciNetGoogle Scholar
  52. Zhong H, Wonham WM (1990) On the consistency of hierarchical supervision in discrete-event systems. IEEE Trans Autom Contr 35(10):1125–1134MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hans Bherer
    • 1
  • Jules Desharnais
    • 2
  • Richard St-Denis
    • 3
  1. 1.xtranormal Inc.MontréalCanada
  2. 2.Département d’informatique et de génie logicielUniversité LavalQuébecCanada
  3. 3.Département d’informatiqueUniversité de SherbrookeSherbrookeCanada

Personalised recommendations