Discrete Event Dynamic Systems

, Volume 15, Issue 3, pp 257–315 | Cite as

Control of Discrete-Event Systems with Partial Observations Using Coalgebra and Coinduction

  • Jan Komenda
  • Jan H. van Schuppen


Control of discrete-event systems with partial observations is treated by concepts and results of coalgebra and coinduction. Coalgebra is part of abstract algebra and enables a generalization of the computer science concept of bisimulation. It can be applied to automata theory and then provides a powerful algebraic tool to treat problems of supervisory control. A framework for control of discrete-event systems with partial observations is formulated in terms of coalgebra. The contributions to control theory are besides the framework, algorithms for supremal normal and supremal normal and controllable sublanguages of the plant.


supervisory control coalgebra bisimulation coinduction partial observations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aczel, P. Non-Well-Founded Sets. CSLI Lecture Notes, Number 14, Stanford University, 1988.Google Scholar
  2. Aczel, P., and Mendler, N. 1989. A final coalgebra theorem. In D. H. Pitt, D. E. Ryeheard, P. Dybjer, A. M. Pitts and A. Poigne (eds.), Proc. Category Theory and Computer Science, Lecture Notes in Computer Science, Volume 389, pp. 357–365.Google Scholar
  3. Barrett, G., and Lafortune, S. 1998. Bisimulation, the supervisory control problem and strong model matching for finite state machines. J. Discret. Event Dyn. Syst.: Theory Appl. 8(4): 377–429.CrossRefGoogle Scholar
  4. Bergeron, A. 1993. A unified approach to control problems in discrete event processes. Inform. Théor. Appl. 27(6): 555–573.Google Scholar
  5. Brandt, R. D., Garg, V., Kumar, R., Lin, F., Marcus, S. I., and Wonham, W. M. 1990. Formulas for calculating supremal controllable and normal sublanguages. Syst. Control Lett. 15: 111–117.CrossRefGoogle Scholar
  6. Cassandras, S. G., and Lafortune, S. 1999. Introduction to Discrete Event Systems. Dordrecht: Kluwer Academic Publishers.Google Scholar
  7. Cieslak, R., Desclaux, C., Fawaz, A., and Varayia, P. 1988. Supervisory control of a class of discrete event processes. IEEE Trans. Automat. Contr. 33: 249–260.CrossRefGoogle Scholar
  8. Cho, H., and Marcus, S. I. 1989a. On supremal languages of classes of sublanguages that arise in supervisor synthesis problems with partial observations. Math. Control Signal Syst. 2: 47–69.Google Scholar
  9. Cho, H., and Marcus, S. I. 1989b. Supremal and maximal sublanguages arising in supervisor synthesis problems with partial observations. Math. Syst. Theory 22: 171–211.Google Scholar
  10. Eilenberg, S. 1974. Automata, Languages, and Machines. New York: Academic Press.Google Scholar
  11. Eilenberg, S., and Moore, J. C. 1965. Adjoint functors and triples. Ill. J. Math. 9: 381–398.Google Scholar
  12. Grossman, R., and Larson, R. G. 1992. The realization map of input–output maps using bialgebras. Forum Math. 4: 109–121.Google Scholar
  13. Gumm, H. P. 2003. State based systems are coalgebras. Cubo—Matemática Educacional 5(2): 239–262.Google Scholar
  14. Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to Automata Theory, Languages and Computation. Reading, MA: Addison-Wesley.Google Scholar
  15. Jacobson, N. 1980. Basic Algebra, Volume 2. New York: W. H. Freeman and Company.Google Scholar
  16. Komenda, J. 2002a. Computation of supremal sublanguages of supervisory control using coalgebra. In Proceedings WODES’02, Workshop on Discrete-Event Systems, Zaragoza, October 2–4, pp. 26–33.Google Scholar
  17. Komenda, J. 2002b. Coalgebra and supervisory control of discrete-event systems with partial observations. In Proceedings of MTNS 2002, Notre Dame (IN), August.Google Scholar
  18. Komenda, J., and van Schuppen, J. H. 2003. Decentralized supervisory control with coalgebra. In Proceedings European Control Conference, ECC’03, Cambridge, September 1–4, 2003, only CD-ROM. Also appeared as Research Report CWI, MAS-E0310, ISSN 1386-3703, Amsterdam.Google Scholar
  19. Komenda, J., and van Schuppen, J. H. 2004. Supremal normal sublanguages of large distributed discrete-event systems. In Proceedings WODES’04, Workshop on Discrete-Event Systems, Reims, September 22–24.Google Scholar
  20. Lafortune, S., and Chen, E. 1990. The infimal closed and controllable superlanguage and its applications in supervisory control. IEEE Trans. Automat. Contr. 35(4): 398–405.CrossRefGoogle Scholar
  21. Lin, F., and Wonham, W. M. 1988. On observability of discrete-event systems. Inf. Sci. 44: 173–198.CrossRefGoogle Scholar
  22. Lin, F., and Wonham, W. M. 1990. Decentralized control and coordination of discrete-event systems with partial observations. IEEE Trans. Automat. Contr. 35: 1330–1337.CrossRefGoogle Scholar
  23. Milner, R. 1989a. A complete aximatisation for observational congruence of finite-state behaviors. Inf. Comput. 81: 227–247.CrossRefGoogle Scholar
  24. Milner, R. 1989b. Communication and Concurrency. Prentice Hall International Series in Computer Science. New York: Prentice Hall International.Google Scholar
  25. Overkamp, A., and van Schuppen, J. H. 2000. Maximal solutions in decentralized supervisory control. SIAM J. Control Optim. 39(2): 492–511.CrossRefGoogle Scholar
  26. Park, D.M.R. Concurrency and Automata on Infinite Sequences, volume 104 of LNCS. Springer, 1980.Google Scholar
  27. Ramadge, P. J., and Wonham, W. M. 1989. The control of discrete-event systems. Proc. IEEE 77: 81–98.CrossRefGoogle Scholar
  28. Rudie, K., and Wonham, W. M. 1990. The infimal prefix-closed and observable superlanguage of a given language. Syst. Control Lett. 15: 361–371.CrossRefGoogle Scholar
  29. Rudie, K., and Wonham, W. M. 1992. Think globally, act locally: Decentralized supervisory control. IEEE Trans. Automat. Contr. 37(11): 1692–1708.CrossRefGoogle Scholar
  30. Rutten, J. J. M. M. 1998. Automata and Coinduction (An Exercise in Coalgebra). Research Report CWI, SEN-R9803, Amsterdam, May. Available also at
  31. Rutten, J. J. M. M. 1999. Coalgebra, Concurrency, and Control. Research Report CWI, SEN-R9921, Amsterdam, November. Available also at
  32. Rutten, J. J. M. M. 2000. Universal coalgebra: A theory of systems. Theor. Comp. Sci. 249(1): 3–80.CrossRefGoogle Scholar
  33. Rutten, J. J. M. M. 2003. Fundamental study. Behavioural differential equations: A coinductive calculus of streams, automata, and power series. Theor. Comp. Sci. 308(1): 1–53.CrossRefGoogle Scholar
  34. Sipser, M. 1997. Introduction to the Theory of Computation. Boston: PWS Publishing Company.Google Scholar
  35. Takai, S., and Ushio, T. 2002. Effective computation of an Lm(G)-closed, controllable, and observable sublanguage arising in supervisory control. In Proceedings WODES’02, Workshop on Discrete-Event Systems, Zaragoza, October 2–4, pp. 34–39.Google Scholar
  36. Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5: 285–309.Google Scholar
  37. Thistle, J. G. 1996. Supervisory control of discrete event systems. Math. Comput. Model. 11/12: 25–53.CrossRefGoogle Scholar
  38. Thistle, J. G., and Wonham, W. M. 1994. Supervision of infinite behavior of discrete-event systems. SIAM J. Control Optim. 32(4): 1098–1113.CrossRefGoogle Scholar
  39. Tsitsiklis, J. N. 1989. On the control of discrete-event dynamical systems. Math. Control Signals Syst. 95–107.Google Scholar
  40. Wonham, W. M. 1976. Towards an abstract internal model principle. IEEE Trans. Syst. Man Cybern. 6(11): 735–740.Google Scholar
  41. Wonham, W. M., and Ramadge, P. J. 1987. On the supremal controllable sublanguage of a given language. SIAM J. Control Optim. 25: 637–659.CrossRefGoogle Scholar
  42. Yoo, T. S., and Lafortune, S. 2002. General architecture for decentralized supervisory control of discrete-event systems. Discret. Event Dyn. Syst.: Theory Appl. 12: 335–377.CrossRefGoogle Scholar
  43. Yoo, T. S., Lafortune, S., and Lin, F. 2001. A uniform approach for computing supremal sublanguages arising in supervisory control theory. Preprint, Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Mathematics-Brno BranchCzech Academy of SciencesBrnoCzech Republic
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations