Differential Equations

, Volume 41, Issue 11, pp 1635–1646 | Cite as

The Semigroup Method for Inverse, Nonlocal, and Nonclassical Problems. Prediction-Control and Prediction-Observation for Evolution Equations: I

  • A. I. Prilepko
Partial Differential Equations


Differential Equation Partial Differential Equation Ordinary Differential Equation Evolution Equation Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobylev, N.A., Emel'yanov, S.V., and Korovin, S.K., Geometricheskie metody v variatsionnykh zadachakh (Geometric Methods in Variational Problems), Moscow, 1998.Google Scholar
  2. 2.
    Daletskii, Yu.L. and Krein, S.G., Ustoichivost' reshenii differentsial'nykh uravnenii v banakhovykh prostranstvakh (Stability of Solutions of Differential Equations in Banach Spaces), Moscow, 1970.Google Scholar
  3. 3.
    Dunford, N. and Schwartz, J., Linear Operators. General Theory, New York, 1958. Translated under the title Lineinye operatory. T. 1. Obshchaya teoriya, Moscow: Inostrannaya Literatura, 1962.Google Scholar
  4. 4.
    Denisov, A.M., Vvedenie v teoriyu obratnykh zadach (Introduction to the Theory of Inverse Problems), Moscow, 1994.Google Scholar
  5. 5.
    Kantorovich, L.V. and Akilov, G.P., Funktsional'nyi analiz (Functional Analysis), Moscow, 1977.Google Scholar
  6. 6.
    Krein, S.G., Lineinye differentsial'nye uravneniya v banakhovom prostranstve (Linear Differential Equations in a Banach Space), Moscow, 1967.Google Scholar
  7. 7.
    Lions, J.-L., Controle optimale de systemes gouvernes par des equations aux derivees partielles, Paris: Dunod, 1968. Translated under the title Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.Google Scholar
  8. 8.
    Prilepko, A.I., Mat. Zametki, 1973, vol. 14, no.6, pp. 755–767.MathSciNetMATHGoogle Scholar
  9. 9.
    Prilepko, A.I. and Kostin, A.B., Mat. Zametki, 1993, vol. 53, no.1, pp. 89–94.MathSciNetGoogle Scholar
  10. 10.
    Prilepko, A.I. and Tikhonov, I.V., Izv. RAN. Ser. Mat., 1994, vol. 58, no.2, pp. 167–188.MathSciNetGoogle Scholar
  11. 11.
    Fursikov, A.V., Optimal'noe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya (Optimal Control of Distributed Systems. Theory and Applications), Novosibirsk, 1999.Google Scholar
  12. 12.
    Tikhonov, I.V. and Eidel'man, Yu.S., Mat. Zametki, 1994, vol. 56, no.2, pp. 99–113.MathSciNetGoogle Scholar
  13. 13.
    Tikhonov, I.V., Differents. Uravn., 1998, vol. 34, no.6, pp. 841–843.MathSciNetMATHGoogle Scholar
  14. 14.
    Tikhonov, I.V., Izv, RAN. Ser. Mat., 2003, vol. 67, no.2, pp. 133–166.MathSciNetMATHGoogle Scholar
  15. 15.
    Bensoussan, A., Da Prato, G., Delfour, M.G., and Mitter, S.K., Representation and Control of Infinite-Dimensional Systems, Boston: Birkhauser, 1992, 1993, vols. 1, 2.Google Scholar
  16. 16.
    Engel, K.J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Berlin, 2000.Google Scholar
  17. 17.
    Isakov, V., Inverse Problems for Partial Differential Equations, Berlin, 1998.Google Scholar
  18. 18.
    Fattorini, H.O., Infinite Dimensional Optimization and Control Theory, Cambridge, 2001.Google Scholar
  19. 19.
    Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, New York, 1983.Google Scholar
  20. 20.
    Prilepko, A.I., Orlovsky, D.G., and Vasin, I.A., Methods for Solving Inverse Problems in Mathematical Physics, New York, 2000.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. I. Prilepko
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations