Differential Equations

, Volume 41, Issue 11, pp 1550–1556 | Cite as

Optimal Perturbation Damping in Linear Control Systems

  • D. V. Balandin
  • M. M. Kogan
Ordinary Differential Equations


Differential Equation Control System Partial Differential Equation Ordinary Differential Equation Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gahinet, P. and Apkarian, P., Intern. J. of Robust and Nonlinear Control, 1994, vol. 4, pp. 421–448.MathSciNetGoogle Scholar
  2. 2.
    Iwasaki, T. and Skelton, R.E., Automatica, 1994, vol. 30, no.8, pp. 1307–1317.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Gahinet, P., Nemirovski, A., Laub, A., and Chilali, M., LMI Control Toolbox. For Use with MATLAB, Philadelphia, 1995.Google Scholar
  4. 4.
    Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost' nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Nonunique Equilibrium), Moscow, 1978.Google Scholar
  5. 5.
    Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge University, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.Google Scholar
  6. 6.
    Balandin, D.V. and Kogan, M.M., Differents. Uravn., 2004, vol. 40, no.11, pp. 1457–1461.Google Scholar
  7. 7.
    El Ghaoui, L., Oustry, F., and Rami, M.A., IEEE Trans. Automat. Control, 1997, vol. 42, pp. 1171–1176.MathSciNetGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • D. V. Balandin
    • 1
    • 2
  • M. M. Kogan
    • 1
    • 2
  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia
  2. 2.Nizhni Novgorod State University of Architecture and Civil EngineeringNizhni NovgorodRussia

Personalised recommendations