Differential Equations

, Volume 41, Issue 7, pp 997–1002 | Cite as

Semidiscrete Schemes of the Finite Element Method for Degenerate Hyperbolic Equations

  • A. D. Lyashko
  • E. M. Fedotov
Numerical Methods


Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Hyperbolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smirnov, M.M., Vyrozhdayushchiesya ellipticheskie i giperbolicheskie uravneniya (Degenerate Elliptic and Hyperbolic Equations), Moscow, 1966.Google Scholar
  2. 2.
    Strang, G. and Fix, G., An Analysis of the Finite Element Method, Englewood Cliffs: Prentice-Hall, 1973. Translated under the title Teoriya metoda konechnykh elementov, Moscow: Mir, 1977.Google Scholar
  3. 3.
    Marchuk, G.I. and Agoshkov, V.I., Vvedenie v proektsionno-setochnye metody (Introduction to Projection-Grid Methods), Moscow, 1981.Google Scholar
  4. 4.
    Gajewski, H., Groger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974. Translated under the title Nelineinye operatornye uravneniya i operatornye differentsial'nye uravneniya, Moscow: Mir, 1978.Google Scholar
  5. 5.
    Zlotnik, A.A., in Vychislit. protsessy i sistemy (Computational Processes and Systems), Moscow, 1991, issue 8, pp. 116–167.Google Scholar
  6. 6.
    Zhelezovskii, S.E. and Bukesova, N.N., Izv. Vyssh. Uchebn. Zaved. Matematika, 1999, no. 5, pp. 94–96.Google Scholar
  7. 7.
    Bukesova, N.N. and Zhelezovskii, S.E., Zh. Vychislit. Mat. Mat. Fiz., 1999, vol. 39, no.9, pp. 1519–1531.Google Scholar
  8. 8.
    Lions, J.-L. and Magenes, E., Problemes aux limites non homogenes et applications, Paris: Dunod, 1968. Translated under the title Neodnorodnye granichnye zadachi i ikh prilozheniya, Moscow: Mir, 1971.Google Scholar
  9. 9.
    Lions, J.-L., Controle optimal de systemes gouvernes par des equations aux derivees partielles, Paris: Dunod, 1968. Translated under the title Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Moscow: Mir, 1972.Google Scholar
  10. 10.
    Nikol'skii, S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya (Approximation of Functions of Many Variables and Embedding Theorems), Moscow, 1977.Google Scholar
  11. 11.
    Timerbaev, M.R., Izv. Vyssh. Uchebn. Zaved. Matematika, 1991, no. 9, pp. 56–60.Google Scholar
  12. 12.
    Ciarlet, Ph., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1977. Translated under the title Metod konechnykh elementov dlya ellipticheskikh zadach, Moscow: Mir, 1980.Google Scholar
  13. 13.
    Timerbaev, M.R., Izv. Vyssh. Uchebn. Zaved. Matematika, 1992, no. 10, pp. 54–60.Google Scholar
  14. 14.
    Timerbaev, M.R., Differents. Uravn., 2000, vol. 36, no.7, pp. 1086–1093.Google Scholar
  15. 15.
    Lyashko, A.D., Differents. Uravn., 2003, vol. 39, no.7, pp. 955–959.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. D. Lyashko
    • 1
  • E. M. Fedotov
    • 1
  1. 1.Kazan State UniversityKazanRussia

Personalised recommendations