Differential Equations

, Volume 41, Issue 6, pp 764–772 | Cite as

The Eigenvalue and the Eigenfunction of the Sturm-Liouville Problem Treated as Analytic Functions of the Integrable Potential

  • V. A. Vinokurov
Ordinary Differential Equations


Differential Equation Partial Differential Equation Analytic Function Ordinary Differential Equation Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, F., Discrete and Continuous Boundary Value Problems, New York, 1964. Translated under the title Diskretnye i nepreryvnye granichnye zadachi, Moscow: Mir, 1968.Google Scholar
  2. 2.
    Schwartz, L., Analyse mathematique, Paris: Hermann, 1967, vols. 1, 2. Translated under the title Analiz, Moscow, 1972, vols. 1, 2.Google Scholar
  3. 3.
    Bourbaki, N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezul’tatov (Differentiable and Analytic Manifolds. Collection of Results), Moscow, 1975.Google Scholar
  4. 4.
    Vinokurov, V.A. and Sadovnichii, V.A., Dokl. RAN, 1999, vol. 365, no.3, pp. 295–297.Google Scholar
  5. 5.
    Vinokurov, V.A. and Sadovnichii, V.A., Dokl. RAN, 2003, vol. 392, no.5, pp. 592–597.Google Scholar
  6. 6.
    Vinokurov, V.A., Chastitsy iz sredy (Particles from Medium), Internet, 2002. http://vinokur.narod.ru/vinbook.htmlGoogle Scholar
  7. 7.
    Vinokurov, V.A., Differents. Uravn., 2005, vol. 41, no.5, pp. 589–602.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. A. Vinokurov
    • 1
  1. 1.Moscow State University of Design and TechnologyMoscowRussia

Personalised recommendations