Differential Equations

, Volume 41, Issue 5, pp 721–732 | Cite as

On a Stable Approximation to Boundary Value Problems for Evolution Operator-Differential Equations with Variable Domains

  • F. E. Lomovtsev
Partial Differential Equations


Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Variable Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krein, S.G., Lineinye differentsial’nye uravneniya v banakhovom prostranstve (Linear Differential Equations in a Banach Space), Moscow, 1967.Google Scholar
  2. 2.
    Lomovtsev, F.E. and Yurchuk, N.I., Differents. Uravn., 1991, vol. 27, no.10, pp. 1754–1766.Google Scholar
  3. 3.
    Lomovtsev, F.E., Differents. Uravn., 1995, vol. 31, no.7, pp. 1132–1141.Google Scholar
  4. 4.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Posed Problems), Moscow, 1986.Google Scholar
  5. 5.
    Samarskii, A.A., Vabishchevich, P.N., and Matus, P.P., Raznostnye skhemy s operatornymi mnozhitelyami (Finite-Difference Approximations with Operator Multipliers), Minsk, 1998.Google Scholar
  6. 6.
    Jovanovic, B.S. and Matus, P.P., Differents. Uravn., 2001, vol. 37, no.7, pp. 950–958.Google Scholar
  7. 7.
    Lions, J.-L., Equations differentielles operationnelles et problemes aux limites, Berlin, 1961.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • F. E. Lomovtsev
    • 1
  1. 1.Belarus State UniversityMinskBelarus

Personalised recommendations