Advertisement

Differential Equations

, Volume 41, Issue 4, pp 506–517 | Cite as

On Homoclinic Trajectories of Evolution Equations

  • R. S. Makin
Ordinary Differential Equations

Keywords

Differential Equation Partial Differential Equation Ordinary Differential Equation Evolution Equation Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Smale, S., Uspekhi Mat. Nauk, 1970, vol. 25, no.1, pp. 113–185.Google Scholar
  2. 2.
    Mel’nikov, V.K., Trudy Mosk. Mat. Obshch., 1963, vol. 12, pp. 3–52.Google Scholar
  3. 3.
    Holmes, P.J., SIAM J. Appl. Math., 1980, vol. 38, pp. 65–80.CrossRefGoogle Scholar
  4. 4.
    Greenspan, B. and Holmes, P.J., Nonlinear Dynamics and Turbulence, Barenblatt, C., Iooss, G., and Joseph, D.D., Eds., London, 1981.Google Scholar
  5. 5.
    Holmes, P.J. and Marsden, J.E., Arch. Rat. Mech. Anal., 1981, vol. 43, pp. 135–165.Google Scholar
  6. 6.
    Hirsch, M., Pugh, C., and Shub, M., Lecture Notes in Math., 1977, no. 583.Google Scholar
  7. 7.
    Makin, R.S., Vestn. DITUD, Dimitrovgrad, 2003, no. 3(17), pp. 82–90.Google Scholar
  8. 8.
    Kato, T., Perturbation Theory for Linear Operators, Heidelberg: Springer, 1966. Translated under the title Teoriya vozmushchenii lineinykh operatorov, Moscow: Mir, 1972.Google Scholar
  9. 9.
    Coddington, E. and Levinson, N., Theory of Ordinary Differential Equations, New York, 1955. Translated under the title Teoriya obyknovennykh differentsial’nykh uravnenii, Moscow: Inostrannaya Literatura, 1958.Google Scholar
  10. 10.
    Pesin, Ya.B., Sovremennye Problemy Matematiki, Fundamental’nye Napravleniya, 1985, vol. 2, pp. 123–173.Google Scholar
  11. 11.
    Makin, R.S., Dokl. Akad. Nauk SSSR, 1984, vol. 274, no.3, pp. 536–540.Google Scholar
  12. 12.
    Makin, R.S., Differents. Uravn., 1988, vol. 24, no.10, pp. 1811–1818.Google Scholar
  13. 13.
    Makin, R.S., Voprosy Atomnoi Nauki i Tekhniki. Yadernaya Tekhnika i Tekhnologiya, 1992, no. 6, pp. 59–67.Google Scholar
  14. 14.
    Makin, R.S., Funkts. Analiz i Ego Prilozheniya, 1987, vol. 20, no.1, pp. 80–81.Google Scholar
  15. 15.
    Makin, R.S., in Trudy NIIAR (Proc. NIIAR), Dimitrovgrad, 1993, pp. 1–104.Google Scholar
  16. 16.
    Read, M. and Simon, B., Methods of Modern Mathematical Physics. Vol. 2: Fourier Analysis and Self-Adjointness, New York: Academic, 1975. Translated under the title Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost’, Moscow: Mir, 1977.Google Scholar
  17. 17.
    Lamb, G.L. (Jr.), Elements of Soliton Theory, New York: Wiley, 1980. Translated under the title Vvedenie v teoriyu solitonov, Moscow, 1983.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • R. S. Makin
    • 1
  1. 1.Research Institute for Nuclear ReactorsDimitrovgradRussia

Personalised recommendations